1,003 research outputs found
Lattice dependence of saturated ferromagnetism in the Hubbard model
We investigate the instability of the saturated ferromagnetic ground state
(Nagaoka state) in the Hubbard model on various lattices in dimensions d=2 and
d=3. A variational resolvent approach is developed for the Nagaoka instability
both for U = infinity and for U < infinity which can easily be evaluated in the
thermodynamic limit on all common lattices. Our results significantly improve
former variational bounds for a possible Nagaoka regime in the ground state
phase diagram of the Hubbard model. We show that a pronounced particle-hole
asymmetry in the density of states and a diverging density of states at the
lower band edge are the most important features in order to stabilize Nagaoka
ferromagnetism, particularly in the low density limit.Comment: Revtex, 18 pages with 18 figures, 7 pages appendices, section on bcc
lattice adde
Intensity interferometry of single x-ray pulses from a synchrotron storage ring
We report on measurements of second-order intensity correlations at the high
brilliance storage ring PETRA III using a prototype of the newly developed
Adaptive Gain Integrating Pixel Detector (AGIPD). The detector recorded
individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV
and repetition rate of about 5 MHz. The second-order intensity correlation
function was measured simultaneously at different spatial separations that
allowed to determine the transverse coherence length at these x-ray energies.
The measured values are in a good agreement with theoretical simulations based
on the Gaussian Schell-model.Comment: 16 pages, 6 figures, 42 reference
Hanbury Brown and Twiss interferometry at a free-electron laser
We present measurements of second- and higher-order intensity correlation
functions (so-called Hanbury Brown and Twiss experiment) performed at the
free-electron laser (FEL) FLASH in the non-linear regime of its operation. We
demonstrate the high transverse coherence properties of the FEL beam with a
degree of transverse coherence of about 80% and degeneracy parameter of the
order 10^9 that makes it similar to laser sources. Intensity correlation
measurements in spatial and frequency domain gave an estimate of the FEL
average pulse duration of 50 fs. Our measurements of the higher-order
correlation functions indicate that FEL radiation obeys Gaussian statistics,
which is characteristic to chaotic sources.Comment: 19 pages, 6 figures, 1 table, 40 reference
Recommended from our members
XUV double-pulses with femtosecond to 650 ps separation from a multilayer-mirror-based split-and-delay unit at FLASH
Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters
- …