21 research outputs found

    Model of Yield Response of Corn to Plant Population and Absorption of Solar Energy

    Get PDF
    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha−1 and g plant−1) on plant population (plants m−2). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Ym (Mg ha−1) for maximum yield at high plant population and c (m2 plant−1) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, xc = 1/c (plants m−2). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of xc were very similar for the three field studies with the same crop species

    A perspective on the measurement of time in plant disease epidemiology

    Get PDF
    The growth and development of plant pathogens and their hosts generally respond strongly to the temperature of their environment. However, most studies of plant pathology record pathogen/host measurements against physical time (e.g. hours or days) rather than thermal time (e.g. degree-days or degree-hours). This confounds the comparison of epidemiological measurements across experiments and limits the value of the scientific literature

    A new broccoli × broccoli immortal mapping population and framework genetic map: tools for breeders and complex trait analysis

    Get PDF
    A unique broccoli x broccoli doubled haploid (DH) population has been created from the F-1 of a cross between two DH broccoli lines derived from cultivars Green Duke and Marathon. We genotyped 154 individuals from this population with simple sequence repeat and amplified fragment length polymorphism markers to create a B. oleracea L. var. italica 'intra-crop' specific framework linkage map. The map is composed of nine linkage groups with a total length of 946.7 cM. Previous published B. oleracea maps have been constructed using diverse crosses between morphotypes of B. oleracea; this map therefore represents a useful breeding resource for the dissection of broccoli specific traits. Phenotype data have been collected from the population over five growing seasons; the framework linkage map has been used to locate quantitative trait loci for agronomically important broccoli traits including head weight (saleable yield), head diameter, stalk diameter, weight loss and relative weight loss during storage, as well as traits for broccoli leaf architecture. This population and associated linkage map will aid breeders to directly map agronomically important traits for the improvement of elite broccoli cultivars
    corecore