2 research outputs found

    Interfaces Within Graphene Nanoribbons

    Get PDF
    We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to details such as whether regions of a semiconducting armchair nanoribbon are included in the curved structure -- such regions strongly suppress the conductance. Surprisingly, this suppression is not due to the band gap of the semiconducting nanoribbon, but is linked to the valley degree of freedom. Though we study these effects in the simplest contexts, they can be expected to occur for more complicated structures, and we show results for rings as well. We conclude that experience from electron gas waveguides does not carry over to graphene nanostructures. The interior interfaces causing extra scattering result from the extra effective degrees of freedom of the graphene structure, namely the valley and sublattice pseudospins.Comment: 19 pages, published version, several references added, small changes to conclusion

    Graphene Rings in Magnetic Fields: Aharonov-Bohm Effect and Valley Splitting

    Get PDF
    We study the conductance of mesoscopic graphene rings in the presence of a perpendicular magnetic field by means of numerical calculations based on a tight-binding model. First, we consider the magnetoconductance of such rings and observe the Aharonov-Bohm effect. We investigate different regimes of the magnetic flux up to the quantum Hall regime, where the Aharonov-Bohm oscillations are suppressed. Results for both clean (ballistic) and disordered (diffusive) rings are presented. Second, we study rings with smooth mass boundary that are weakly coupled to leads. We show that the valley degeneracy of the eigenstates in closed graphene rings can be lifted by a small magnetic flux, and that this lifting can be observed in the transport properties of the system.Comment: 12 pages, 9 figure
    corecore