216 research outputs found
Shell model calculation of the beta- and beta+ partial halflifes of 54Mn and other unique second forbidden beta decays
The nucleus 54Mn has been observed in cosmic rays. In astrophysical
environments it is fully stripped of its atomic electrons and its decay is
dominated by the beta- branch to the 54Fe ground state. Application of 54Mn
based chronometer to study the confinement of the iron group cosmic rays
requires knowledge of the corresponding halflife, but its measurement is
impossible at the present time. However, the branching ratio for the related
beta+ decay of 54Mn was determined recently. We use the shell model with only a
minimal truncation and calculate both beta+ and beta- decay rates of 54Mn. Good
agreement for the beta+ branch suggests that the calculated partial halflife of
the beta- decay, (4.94 \pm 0.06) x 10^5 years, should be reliable. However,
this halflife is noticeably shorter than the range 1-2 x 10^6 y indicated by
the fit based on the 54Mn abundance in cosmic rays. We also evaluate other
known unique second forbidden beta decays from the nuclear p and sd shells
(10Be, 22Na, and two decay branches of 26Al) and show that the shell model can
describe them with reasonable accuracy as well.Comment: 4 pages, RevTeX, 2 figure
Large Deformation Effects in the N = Z 44Ti Compound Nucleus
The N = Z 44Ti* nucleus has been populated in Fusion Evaporation process at
very high excitation energies and angular momenta using two entrance channels
with different mass-asymmetry. The deformation effects in the rapidly rotating
nuclei have been investigated through the energy distribution of the
alpha-particle combined to statistical-model calculations. In the case of
low-multiplicity events, the ratio between first particle emitted has been
measured and shows significant disagreement with the predictions of the
statistical-model. This may explain The large discrepancies observed in proton
energy spectra measured in previous experiments performed in the same mass
region.Comment: Proceeding of the 10th International Conference on Nuclear Reaction
Mechanisms, Varenna Italy, June 9-13 2003. 10 pages, 6 figures, 1 tabl
Investigations of three, four, and five-particle exit channels of levels in light nuclei created using a 9C beam
The interactions of a E/A=70-MeV 9C beam with a Be target was used to
populate levels in Be, B, and C isotopes which undergo decay into many-particle
exit channels. The decay products were detected in the HiRA array and the level
energies were identified from their invariant mass. Correlations between the
decay products were examined to deduce the nature of the decays, specifically
to what extent all the fragments were created in one prompt step or whether the
disintegration proceeded in a sequential fashion through long-lived
intermediate states. In the latter case, information on the spin of the level
was also obtained. Of particular interest is the 5-body decay of the 8C ground
state which was found to disintegrate in two steps of two-proton decay passing
through the 6Beg.s. intermediate state. The isobaric analog of 8Cg.s. in 8B was
also found to undergo two-proton decay to the isobaric analog of 6Beg.s. in
6Li. A 9.69-MeV state in 10C was found to undergo prompt 4-body decay to the
2p+2alpha exit channel. The two protons were found to have a strong
enhancementin the diproton region and the relative energies of all four p-alpha
pairs were consistent with the 5Lig.s. resonance
Alpha-decay branching ratios of near-threshold states in <sup>19</sup>Ne and the astrophysical rate of <sup>15</sup> O(α, γ )<sup>19</sup>Ne
The 15O(α,γ)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + α threshold. We have measured the α-decay branching ratios for these states using the p(21lNe,t)19Ne reaction at 43 MeV/u.</p
The observation of long-range three-body Coloumb effects in the decay of 16Ne
The interaction of an =57.6-MeV Ne beam with a Be target was used
to populate levels in Ne following neutron knockout reactions. The decay
of Ne states into the three-body O++ continuum was observed
in the High Resolution Array (HiRA). For the first time for a 2p emitter,
correlations between the momenta of the three decay products were measured with
sufficient resolution and statistics to allow for an unambiguous demonstration
of their dependence on the long-range nature of the Coulomb interaction.
Contrary to previous experiments, the intrinsic decay width of the Ne
ground state was found to be narrow (~keV), consistent with
theoretical estimates.Comment: 6 pages, 5 figure
Number of quantal resonances
Employing the concept of time-delay, a relation is found which counts the
number of quantal resonances supported by a potential. Several simple and
advanced illustrations include a treatment of square-well, Dirac delta barrier,
an interesting physical situation from neutron reflectometry, and the Delta
resonance appearing in the scattering of \pi meson from proton.Comment: 9 pages, 5 figure
Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne
The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the
hot CNO cycles into the rp process in accreting neutron stars. Its
astrophysical rate depends critically on the decay properties of excited states
in 19Ne lying just above the 15O + alpha threshold. We have measured the
alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction
at 43 MeV/u. Combining our measurements with previous determinations of the
radiative widths of these states, we conclude that no significant breakout from
the hot CNO cycle into the rp process in novae is possible via
15O(alpha,gamma)19Ne, assuming current models accurately represent their
temperature and density conditions
- …