29 research outputs found

    Neurofilaments can differentiate ALS subgroups and ALS from common diagnostic mimics

    Get PDF
    Delayed diagnosis and misdiagnosis are frequent in people with amyotrophic lateral sclerosis (ALS), the most common form of motor neuron disease (MND). Neurofilament light chain (NFL) and phosphorylated neurofilament heavy chain (pNFH) are elevated in ALS patients. We retrospectively quantified cerebrospinal fluid (CSF) NFL, CSF pNFH and plasma NFL in stored samples that were collected at the diagnostic work-up of ALS patients (n = 234), ALS mimics (n = 44) and controls (n = 9). We assessed the diagnostic performance, prognostication value and relationship to the site of onset and genotype. CSF NFL, CSF pNFH and plasma NFL levels were significantly increased in ALS patients compared to patients with neuropathies & myelopathies, patients with myopathies and controls. Furthermore, CSF pNFH and plasma NFL levels were significantly higher in ALS patients than in patients with other MNDs. Bulbar onset ALS patients had significantly higher plasma NFL levels than spinal onset ALS patients. ALS patients with C9orf72HRE mutations had significantly higher plasma NFL levels than patients with SOD1 mutations. Survival was negatively correlated with all three biomarkers. Receiver operating characteristics showed the highest area under the curve for CSF pNFH for differentiating ALS from ALS mimics and for plasma NFL for estimating ALS short and long survival. All three biomarkers have diagnostic value in differentiating ALS from clinically relevant ALS mimics. Plasma NFL levels can be used to differentiate between clinical and genetic ALS subgroups

    Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS

    Get PDF
    Despite major advances in deciphering the neuropathological hallmarks of amyotrophic lateral sclerosis (ALS), validated neurochemical biomarkers for monitoring disease activity, earlier diagnosis, defining prognosis and unlocking key pathophysiological pathways are lacking. Although several candidate biomarkers exist, translation into clinical application is hindered by small sample numbers, especially longitudinal, for independent verification. This review considers the potential routes to the discovery of neurochemical markers in ALS, and provides a consensus statement on standard operating procedures that will facilitate multicenter collaboration, validation and ultimately clinical translation

    Disease-Related Changes in the Cerebrospinal Fluid Metabolome in Amyotrophic Lateral Sclerosis Detected by GC/TOFMS

    Get PDF
    The changes in the cerebrospinal fluid (CSF) metabolome associated with the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) are poorly understood and earlier smaller studies have shown conflicting results. The metabolomic methodology is suitable for screening large cohorts of samples. Global metabolomics can be used for detecting changes of metabolite concentrations in samples of fluids such as CSF.Using gas chromatography coupled to mass spectrometry (GC/TOFMS) and multivariate statistical modeling, we simultaneously studied the metabolome signature of ∼120 small metabolites in the CSF of patients with ALS, stratified according to hereditary disposition and clinical subtypes of ALS in relation to controls.The study is the first to report data validated over two sub-sets of ALS vs. control patients for a large set of metabolites analyzed by GC/TOFMS. We find that patients with sporadic amyotrophic lateral sclerosis (SALS) have a heterogeneous metabolite signature in the cerebrospinal fluid, in some patients being almost identical to controls. However, familial amyotrophic lateral sclerosis (FALS) without superoxide dismutase-1 gene (SOD1) mutation is less heterogeneous than SALS. The metabolome of the cerebrospinal fluid of 17 ALS patients with a SOD1 gene mutation was found to form a separate homogeneous group. Analysis of metabolites revealed that glutamate and glutamine were reduced, in particular in patients with a familial predisposition. There are significant differences in the metabolite profile and composition among patients with FALS, SALS and patients carrying a mutation in the SOD1 gene suggesting that the neurodegenerative process in different subtypes of ALS may be partially dissimilar.Patients with a genetic predisposition to amyotrophic lateral sclerosis have a more distinct and homogeneous signature than patients with a sporadic disease

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF

    GBA

    No full text

    Cholesterol, Oxysterol, Triglyceride, and Coenzyme Q Homeostasis in ALS. Evidence against the Hypothesis That Elevated 27- Hydroxycholesterol Is a Pathogenic Factor

    No full text
    Abstract High plasma levels of cholesterol have been suggested to be neuroprotective for the degenerative disease amyotrophic lateral sclerosis (ALS) and to be associated with increased survival time. The gene encoding cholesterol 27-hydroxylase, CYP27A1, was recently identified as a susceptibility gene for sporadic ALS. A product of this enzyme is 27-hydroxycholesterol. We investigated plasma samples from 52 ALS patients and 40 control subjects (spouses) regarding cholesterol homeostasis, lipid profiles, and coenzyme Q. Eleven of the patients carried mutations in C9orf72 and seven in SOD1. Plasma levels of 27-hydroxycholesterol were significantly lower in male patients with ALS than in controls. It was not possible to link the reduced levels to any specific mutation, and there was no significant correlation between 27-hydroxycholesterol and survival. With normalization for diet using the spouses, a correlation was found between survival and total cholesterol, very low density lipoprotein cholesterol, low density lipoprotein cholesterol, and coenzyme Q. We conclude that cholesterol, 24S-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol and lipid profiles in plasma are of limited prognostic value in individual ALS patients
    corecore