4,178 research outputs found

    Application of The Method of Elastic Maps In Analysis of Genetic Texts

    Get PDF
    Abstract - Method of elastic maps ( http://cogprints.ecs.soton.ac.uk/archive/00003088/ and http://cogprints.ecs.soton.ac.uk/archive/00003919/ ) allows us to construct efficiently 1D, 2D and 3D non-linear approximations to the principal manifolds with different topology (piece of plane, sphere, torus etc.) and to project data onto it. We describe the idea of the method and demonstrate its applications in analysis of genetic sequences. The animated 3D-scatters are available on our web-site: http://www.ihes.fr/~zinovyev/7clusters/ We found the universal cluster structure of genetic sequences, and demonstrated the thin structure of these clusters for coding regions. This thin structure is related to different translational efficiency

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    FuzzyART: An R Package for ART-based Clustering

    Get PDF
    Adaptive Resonance Theory (ART) was introduced by Steven Grossberg as a theory of human cognitive information processing (Grossberg 1976, 1980). Extending the capabilities of the ART 1 model, which can learn to categorize patterns in binary data, fuzzy ART as described in (Carpenter, Grossberg, and Rosen 1991) has become one of the most commenly used Adaptive Resonance Theory models (Brito da Silva, Elnabarawy, and Wunsch 2019). By incorporating fuzzy set theroy operators, fuzzy ART is capable of learning from binaray and bounded real valued data. Its advantage over other unsupervised learning algorithms lies in the flexibility of the learning rule. If a given input feature does not resemble a known category satisfactorily, as determined by the vigilance test, a new category is initialized. Hence, the total number of categories (or clusters) is not determined a-priori, like k-means, but chosen in accordance with the data and the context of already learnt representations. This vignette explores the use of the fuzzy ART implementation as provided by the FuzzyART R package

    Fuzzy Logic in Collective Robotic Search

    Get PDF
    One important application of mobile robots is searching a geographical region to locate the origin of a specific sensible phenomenon. We first propose a fuzzy logic approach using a decision table. A novel fuzzy rule based was designed. And then a fuzzy search strategy is adopted by utilizing the three tier centers of mass coordination. Experimental results show that fuzzy logic algorithm is an efficient approach for the collective robots to locate the target source. In addition, noise and the position of the target affect the searching result

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation
    • …
    corecore