1,734 research outputs found

    Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices

    Full text link
    We observed the coulomb blockade phenomena in ferromagnetic contacting single wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was observed with existing only the Zeeman splitting at 4K. Combining with other effects, the ferromagnetic leads prevent the orbital spin states splitting with magnetic field up to 2 Tesla at 4K. With increasing magnetic field further, both positive or negative coulomb peaks shift slopes are observed associating with clockwise and anticlockwise orbital state splitting. The strongly suppressed/enhanced of the conductance has been observed associating with the magnetic field induced orbital states splitting/converging

    Franck-Condon Physics in A Single Trapped Ion

    Full text link
    We propose how to explore the Franck-Condon (FC) physics via a single ion confined in a spin-dependent potential, formed by the combination of a Paul trap and a magnetic field gradient. The correlation between electronic and vibrational degrees of freedom, called as electron-vibron coupling, is induced by a nonzero gradient. For a sufficiently strong electron-vibron coupling, the FC blockade of low-lying vibronic transitions takes place. We analyze the feasibility of observing the FC physics in a single trapped ion, and demonstrate various potential applications of the ionic FC physics in quantum state engineering and quantum information processing.Comment: 7 pages, 5 figure

    Study of ambiguities in πpΛK0\pi^-p\to \Lambda K^0 scattering amplitudes

    Full text link
    Amplitudes for the reaction πpΛK0\pi^-p\to \Lambda K^0 are reconstructed from data on the differential cross section dσ/dΩd\sigma/d\Omega, the recoil polarization PP, and on the spin rotation parameter β\beta. At low energies, no data on β\beta exist, resulting in ambiguities. An approximation using SS and PP waves leads only to a fair description of the data on dσ/dΩd\sigma/d\Omega and PP; in this case, there are two sets of amplitudes. Including DD waves, the data on dσ/dΩd\sigma/d\Omega and PP are well reproduced by the fit but now, there are several distinct solutions which describe the data with identical precision. In the range where the spin rotation parameter β\beta was measured, a full and unambiguous reconstruction of the partial wave amplitudes is possible. The energy-independent amplitudes are compared to the energy dependent amplitudes which resulted from a coupled channel fit (BnGa2011-02) to a large data set including both pion and photo-induced reactions. Significant deviations are observed. Consistency between energy dependent and energy independent solutions by choosing the energy independent solution which is closest to the energy dependent solution. In a second step, the {\it known} energy dependent solution for low (or high) partial waves is imposed and only the high (or low) partial waves are fitted leading to smaller uncertainties

    Edge spin accumulation in a ballistic regime

    Full text link
    We consider a mesoscopic {\it ballistic} structure with Rashba spin-orbit splitting of the electron spectrum. The ballistic region is attached to the leads with a voltage applied between them. We calculate the edge spin density which appears in the presence of a charge current through the structure due to the difference in populations of electrons coming from different leads. Combined effect of the boundary scattering and spin precession leads to oscillations of the edge polarization with the envelope function decaying as a power law of the distance from the boundary. The problem is solved with the use of scattering states. The simplicity of the method allows to gain an insight into the underlaying physics. We clarify the role of the unitarity of scattering for the problem of edge spin accumulation. In case of a straight boundary it leads to exact cancellation of all long-wave oscillations of the spin density. As a result, only the Friedel-like spin density oscillations with the momentum 2k_F survive. However, this appears to be rather exceptional case. In general, the smooth spin oscillations with the spin precession length recover, as it happens, e.g., for the wiggly boundary. We demonstrate also, that there is no relation between the spin current in the bulk, which is zero in the considered case, and the edge spin accumulation.Comment: Latex, 6 pages, 2 fig
    corecore