13 research outputs found

    Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Get PDF
    Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval. Purkinje cell simple spike suppression is a central driving mechanism in cerebellar conditioning. Here, ten Brinke etal. show how simple spike suppression, conditioned stimulus-related complex spikes, and molecular layer interneuron (MLI) activity correlate to conditioned eyelid behavior. Moreover, transgenic impairment of MLI input results in deficits in conditioned behavior

    Quantitative Organization of GABAergic Synapses in the Molecular Layer of the Mouse Cerebellar Cortex

    Get PDF
    In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess the ratio of GABAergic synapses on Purkinje cell dendrites versus those on interneurons. We generated a mouse model in which the GABAA receptor α1 subunit (GABAARα1) was selectively removed from Purkinje cells using the Cre/loxP system. Deletion of the α1 subunit resulted in a complete loss of GABAAR aggregates from Purkinje cells, allowing us to determine the density of GABAAR clusters in interneurons. In a complementary approach, we determined the density of GABA synapses impinging on Purkinje cells using α-dystroglycan as a specific marker of inhibitory postsynaptic sites. Combining these inverse approaches, we found that synapses received by interneurons represent approximately 40% of all GABAergic synapses in the molecular layer. Notably, this proportion was stable during postnatal development, indicating synchronized synaptogenesis. Based on the pure quantity of GABAergic synapses onto interneurons, we propose that mutual inhibition must play an important, yet largely neglected, computational role in the cerebellar cortex

    Praying in a Secularized Society: An Empirical Study of Praying Practices and Varieties

    Get PDF
    Social scientific studies from the secular Netherlands has pointed out that religious rituals such as praying are still widely present. This study examines the content of the praying practices of the Dutch and distinguishes varieties of prayer by analyzing answers to open-ended questions of a representative Dutch survey .N D 1; 008/: It is concluded, first, that a majority of the Dutch prays. Second, four varieties of prayer are distinguished: petitionary, religious, meditative, and impulsive prayer. Comparing these varieties with types of prayer found in other empirical studies, it emerges that the petitionary and religious prayer are similar to classical prayers found in other studies from less secularized countries, whereas the meditative and impulsive prayers are fundamentally different from other prayer types and can be considered as examples of a praying practice in a secularized society.

    Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning.

    No full text
    Although feedforward inhibition onto Purkinje cells was first documented 40 years ago, we understand little of how inhibitory interneurons contribute to cerebellar function in behaving animals. Using a mouse line (PC-Deltagamma2) in which GABA(A) receptor-mediated synaptic inhibition is selectively removed from Purkinje cells, we examined how feedforward inhibition from molecular layer interneurons regulates adaptation of the vestibulo-ocular reflex. Although impairment of baseline motor performance was relatively mild, the ability to adapt the phase of the vestibulo-ocular reflex and to consolidate gain adaptations was strongly compromised. Purkinje cells showed abnormal patterns of simple spikes, both during and in the absence of evoked compensatory eye movements. On the basis of modeling our experimental data, we propose that feedforward inhibition, by controlling the fine-scale patterns of Purkinje cell activity, enables the induction of plasticity in neurons of the cerebellar and vestibular nuclei

    From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors

    No full text
    In mammals, identifying the contribution of specific neurons or networks to behavior is a key challenge. Here we describe an approach that facilitates this process by enabling the rapid modulation of synaptic inhibition in defined cell populations. Binding of zolpidem, a systemically active allosteric modulator that enhances the function of the GABAA receptor, requires a phenylalanine residue (Phe77) in the gamma 2 subunit. Mice in which this residue is changed to isoleucine are insensitive to zolpidem. By Cre recombinase-induced swapping of the gamma 2 subunit (that is, exchanging Ile77 for Phe77), zolpidem sensitivity can be restored to GABAA receptors in chosen cell types. We demonstrate the power of this method in the cerebellum, where zolpidem rapidly induces significant motor deficits when Purkinje cells are made uniquely sensitive to its action. This combined molecular and pharmacological technique has demonstrable advantages over targeted cell ablation and will be invaluable for investigating many neuronal circuits
    corecore