250 research outputs found

    Cerebral blood perfusion changes in multiple sclerosis

    Get PDF
    The proximity of immune cell aggregations to the vasculature is a hallmark of multiple sclerosis. Furthermore, it is widely accepted that inflammation is able to modulate the microcirculation. Until recently, the detection of cerebral blood perfusion changes was technically challenging, and perfusion studies in multiple sclerosis patients yielded contradictory results. However, new developments in fast magnetic resonance imaging have enabled us to image the cerebral hemodynamics based on the dynamic tracking of a bolus of paramagnetic contrast agents (dynamic susceptibility contrast). This review discusses the technical principles, possible pitfalls, and potential for absolute quantification of cerebral blood volume and flow in a clinical setting. It also outlines recent findings on inflammation associated perfusion changes, which are inseparable from pathological considerations in multiple sclerosis

    Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management

    Get PDF
    Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making and personalised disease management

    Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients

    Get PDF
    BACKGROUND: Previous studies have postulated an association between dentate nucleus T1 hyperintensity and multiple sclerosis (MS)-related progressive neurodegeneration. Therefore, MS patients have been excluded from most studies investigating brain deposition of gadolinium-based contrast agents (GBCAs). OBJECTIVE: To study the hypothesis that dentate nucleus T1 hyperintensity in MS patients is associated with GBCA administration. METHODS: In a cohort of 97 MS patients, the dentate-to-pons signal intensity ratio (DPSIR) was calculated for 265 consecutive T1-weighted magnetic resonance (MR) scans (including sessions with and without the administration of GBCA). Patients exclusively received either gadopentetate dimeglumine (Gd-DTPA, linear) or gadobutrol (Gd-BT-DO3A, macrocyclic). RESULTS: In patients receiving Gd-DTPA, DPSIR increased significantly between the first and the last scan (+0.009, p < 0.001), and following magnetic resonance imaging (MRI) with Gd-DTPA administration as compared to following an MRI without Gd-DTPA administration (+0.005 vs -0.001; p = 0.022). Additionally, there was a positive linear relationship between the number of Gd-DTPA administrations and the increase in DPSIR (p = 0.017). No DPSIR increase was observed after Gd-BT-DO3A administration. CONCLUSION: Dentate nucleus T1 hyperintensity in MS patients is associated with Gd-DTPA (but not Gd-BT-DO3A) administration, suggesting an alternative explanation for the association of T1 hyperintensity with disease duration and severity

    Progressive multifocal leukoencephalopathy in a multiple Sclerosis patient diagnosed after switching from natalizumab to fingolimod

    Get PDF
    Background: Natalizumab- (NTZ-) associated progressive multifocal leukoencephalopathy (PML) is a severe and often disabling infectious central nervous system disease that can become evident in multiple sclerosis (MS) patients after NTZ discontinuation. Recently, novel diagnostic biomarkers for the assessment of PML risk in NTZ treated MS patients such as the anti-JC virus antibody index have been reported, and the clinical relevance of milky-way lesions detectable by MRI has been discussed. Case Presentation and Conclusion: We report a MS patient in whom PML was highly suspected solely based on MRI findings after switching from NTZ to fingolimod despite repeatedly negative (ultrasensitive) polymerase chain reaction (PCR) testing for JC virus DNA in cerebrospinal fluid. The PML diagnosis was histopathologically confirmed by brain biopsy. The occurrence of an immune reconstitution inflammatory syndrome (IRIS) during fingolimod therapy, elevated measures of JCV antibody indices, and the relevance of milky-way-like lesions detectable by (7 T) MRI are discussed

    Rapid parametric mapping of the longitudinal relaxation time t1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla

    Get PDF
    INTRODUCTION: Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. METHODS: T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. RESULTS: Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. CONCLUSION: Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization

    Smells like school spirit: The organizational factors affecting targeted student and teacher outcomes

    Get PDF
    Teacher burnout and stress have been studied at length in the education literature, but industrial-organizational psychologists may have a fresh perspective to offer in regard to understanding and solving the problems that negatively impact the public education system. This study aims to identify the root causes underlying the constructs of stress and burnout through the examination of working conditions that impact teacher absenteeism, turnover, and health outcomes. Additionally, this study will analyze the various predictors of student outcomes, including yearly test scores, absenteeism, and disciplinary referral rates. We will begin by conducting focus groups of teachers from laboratory schools and comparable public schools to gather qualitative data to inform our hypotheses. In the next phase, we will create a tailored survey that thoroughly assesses the working conditions that we hypothesize to be connected to our outcome variables. This survey will be dispersed to teachers state-wide, and from the results, we hope to create a comprehensive model that connects various environmental conditions to student and teacher outcomes and propose interventions

    7T MRI in natalizumab-associated PML and ongoing MS disease activity: a case study

    Get PDF
    OBJECTIVE: To assess the ability of ultra-high-field MRI to distinguish early progressive multifocal leukoencephalopathy (PML) from multiple sclerosis (MS) lesions in a rare case of simultaneous presentation of natalizumab-associated PML and ongoing MS activity. METHODS: Advanced neuroimaging including 1.5T, 3T, and 7T MRI with a spatial resolution of up to 0.08 mm(3) was performed. RESULTS: 7T MRI differentiated between PML-related and MS-related brain damage in vivo. Ring-enhancing MS plaques displayed a central vein, whereas confluent PML lesions were preceded by punctate or milky way-like T2 lesions. CONCLUSIONS: Given the importance of early diagnosis of treatment-associated PML, future systematic studies are warranted to assess the value of highly resolving MRI in differentiating between early PML- and MS-induced brain parenchymal lesions

    Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica

    Get PDF
    Objective: To investigate and compare occult damages in aquaporin-4 (AQP4)-rich periependymal regions in patients with neuromyelitis optica spectrum disorder (NMOSD) vs healthy controls (HCs) and patients with multiple sclerosis (MS) applying quantitative T1 mapping at 7 Tesla (T) in a cross-sectional study. Methods: Eleven patients with NMOSD (median Expanded Disability Status Scale [EDSS] score 3.5, disease duration 9.3 years, age 43.7 years, and 11 female) seropositive for anti-AQP4 antibodies, 7 patients with MS (median EDSS score 1.5, disease duration 3.6, age 30.2 years, and 4 female), and 10 HCs underwent 7T MRI. The imaging protocol included T2*-weighted (w) imaging and an MP2RAGE sequence yielding 3D T1w images and quantitative T1 maps. We semiautomatically marked the lesion-free periependymal area around the cerebral aqueduct and the lateral, third, and fourth ventricles to finally measure and compare the T1 relaxation time within these areas. Results: We did not observe any differences in the T1 relaxation time between patients with NMOSD and HCs (all > 0.05). Contrarily, the T1 relaxation time was longer in patients with MS vs patients with NMOSD (lateral ventricle = 0.056, third ventricle = 0.173, fourth ventricle = 0.016, and cerebral aqueduct = 0.048) and vs HCs (third ventricle = 0.027, fourth ventricle = 0.013, lateral ventricle = 0.043, and cerebral aqueduct = 0.005). Conclusion: Unlike in MS, we did not observe subtle T1 changes in lesion-free periependymal regions in NMOSD, which supports the hypothesis of a rather focal than diffuse brain pathology in NMOSD
    • …
    corecore