67 research outputs found

    Contributions of Cell-extrinsic and Cell-intrinsic Factors to the Differentiation of a Neural-crest-derived Neuroendocrine Progenitor Cell

    Get PDF
    A central question in developmental neurobiology concerns the mechanisms that generate cellular diversity in the vertebrate nervous system. Cell lineage analyses have established that many progenitor cells in the developing nervous system are multipotent (Turner and Cepko 1987; Holt et al. 1988; Wetts and Fraser 1988). However, the mechanisms that control the differentiation of such progenitor cells are poorly understood

    High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array

    Get PDF
    We have chemically modified metal nanoslit array surfaces with alkanethiol self-assembled monolayers and have characterized the resulting spectral shift of optical transmission. Adsorption of a self-assembled monolayer (1.5 nm thick) on a silver nanoslit array (slit width of 30-50 nm and grating period of 360 nm) is found to cause an 11 nm redshift of the main transmission peak. Strong confinement of optical fields in the narrow slit region allows sensitive transduction of surface modification into a shift of surface plasmon resonance wavelength. (c) 2006 American Institute of Physics

    Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG)

    Get PDF
    The human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N[superscript 6]-ethenoadenine (εA). The crystal structures of AAG bound to εA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Δ80AAG on a library of oligonucleotides containing structurally diverse base modifications. Substrate binding and base excision kinetics of AAG with 13 damaged oligonucleotides were examined. We found that AAG bound to a wide variety of purine and pyrimidine lesions but excised only a few of them. Single-turnover excision kinetics showed that in addition to the well-known εA and Hx substrates, 1-methylguanine (m1G) was also excised efficiently by AAG. Thus, along with εA and ethanoadenine (EA), m1G is another substrate that is shared between AAG and the direct repair protein AlkB. In addition, we found that both the full-length and truncated AAG excised 1,N[superscript 2]-ethenoguanine (1,N[superscript 2]-εG), albeit weakly, from duplex DNA. Uracil was excised from both single- and double-stranded DNA, but only by full-length AAG, indicating that the N-terminus of AAG may influence glycosylase activity for some substrates. Although AAG has been primarily shown to act on double-stranded DNA, AAG excised both εA and Hx from single-stranded DNA, suggesting the possible significance of repair of these frequent lesions in single-stranded DNA transiently generated during replication and transcription.United States. National Institutes of Health (grant ES05355)United States. National Institutes of Health (grant CA75576)United States. National Institutes of Health (grant CA55042)United States. National Institutes of Health (grant ES02109)United States. National Institutes of Health (grant T32-ES007020)United States. National Institutes of Health (grant CA80024)United States. National Institutes of Health (grant CA26731

    Multipotent Capacity of Immortalized Human Bronchial Epithelial Cells

    Get PDF
    While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs) display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lung when experimentally tested in cell culture. When cultured in three different three-dimensional (3D) systems, subtle changes in the microenvironment result in unique responses including the ability of HBECs to differentiate into multiple central and peripheral lung cell types. These new findings indicate that the adult human lung contains a multipotent progenitor cell whose differentiation potential is primarily dictated by the microenvironment. The HBEC system is not only important in understanding mechanisms for specific cell lineage differentiation, but also for examining changes that correlate with human lung diseases including lung cancer

    c-Myc Regulates Self-Renewal in Bronchoalveolar Stem Cells

    Get PDF
    BACKGROUND: Bronchoalveolar stem cells (BASCs) located in the bronchoalveolar duct junction are thought to regenerate both bronchiolar and alveolar epithelium during homeostatic turnover and in response to injury. The mechanisms directing self-renewal in BASCs are poorly understood. METHODS: BASCs (Sca-1(+), CD34(+), CD31(-) and, CD45(-)) were isolated from adult mouse lung using FACS, and their capacity for self-renewal and differentiation were demonstrated by immunostaining. A transcription factor network of 53 genes required for pluripotency in embryonic stem cells was assessed in BASCs, Kras-initiated lung tumor tissue, and lung organogenesis by real-time PCR. c-Myc was knocked down in BASCs by infection with c-Myc shRNA lentivirus. Comprehensive miRNA and mRNA profiling for BASCs was performed, and significant miRNAs and mRNAs potentially regulated by c-Myc were identified. We explored a c-Myc regulatory network in BASCs using a number of statistical and computational approaches through two different strategies; 1) c-Myc/Max binding sites within individual gene promoters, and 2) miRNA-regulated target genes. RESULTS: c-Myc expression was upregulated in BASCs and downregulated over the time course of lung organogenesis in vivo. The depletion of c-Myc in BASCs resulted in decreased proliferation and cell death. Multiple mRNAs and miRNAs were dynamically regulated in c-Myc depleted BASCs. Among a total of 250 dynamically regulated genes in c-Myc depleted BASCs, 57 genes were identified as potential targets of miRNAs through miRBase and TargetScan-based computational mapping. A further 88 genes were identified as potential downstream targets through their c-Myc binding motif. CONCLUSION: c-Myc plays a critical role in maintaining the self-renewal capacity of lung bronchoalveolar stem cells through a combination of miRNA and transcription factor regulatory networks

    Excitation and Propagation of Surface Plasmons in a Metallic Nanoslit Structure

    No full text
    • …
    corecore