2,044 research outputs found

    Distributed entanglement induced by dissipative bosonic media

    Full text link
    We describe a scheme with analytic result that allows to generate steady-state entanglement for two atoms over a dissipative bosonic medium. The resonant coupling between the mediating bosonic mode and cavity modes produces three collective atomic decay channels. This dissipative dynamics, together with the unitary process induced by classical microwave fields, drives the two atoms to the symmetric or asymmetric entangled steady state conditional upon the choice of the phases of the microwave fields. The effects on the steady-state entanglement of off-resonance mediating bosonic modes are analyzed. The entanglement can be obtained with high fidelity regardless of the initial state and there is a linear relation in the scaling of the fidelity with the cooperativity parameter. The fidelity is insensitive to the fluctuation of the Rabi frequencies of the classical driving fields.Comment: to appear in Europhysics Letter

    5 GHz TMRT observations of 71 pulsars

    Full text link
    We present integrated pulse profiles at 5~GHz for 71 pulsars, including eight millisecond pulsars (MSPs), obtained using the Shanghai Tian Ma Radio Telescope (TMRT). Mean flux densities and pulse widths are measured. For 19 normal pulsars and one MSP, these are the first detections at 5~GHz and for a further 19, including five MPSs, the profiles have a better signal-to-noise ratio than previous observations. Mean flux density spectra between 400~MHz and 9~GHz are presented for 27 pulsars and correlations of power-law spectral index are found with characteristic age, radio pseudo-luminosity and spin-down luminosity. Mode changing was detected in five pulsars. The separation between the main pulse and interpulse is shown to be frequency independent for six pulsars but a frequency dependence of the relative intensity of the main pulse and interpulse is found. The frequency dependence of component separations is investigated for 20 pulsars and three groups are found: in seven cases the separation between the outmost leading and trailing components decreases with frequency, roughly in agreement with radius-to-frequency mapping; in eleven cases the separation is nearly constant; in the remain two cases the separation between the outmost components increases with frequency. We obtain the correlations of pulse widths with pulsar period and estimate the core widths of 23 multi-component profiles and conal widths of 17 multi-component profiles at 5.0~GHz using Gaussian fitting and discuss the width-period relationship at 5~GHz compared with the results at at 1.0~GHz and 8.6~GHz.Comment: 46 pages, 14 figures, 8 Tables, accepted by Ap
    corecore