8,925 research outputs found

    Improved electrical characteristics of CoSi2 using HF-vapor pretreatment

    Get PDF
    [[abstract]]We have developed a simple process to form epitaxial CoSi2 for shallow junction. Prior to metal deposition, the patterned wafers were treated with HF-vapor passivation. As observed by scanning tunneling microscopy (STM), this HF, treatment drastically improves the native oxide-induced sur face roughness. The epitaxial behavior was confirmed by cross-sectional transmission electron microscopy (TEM), Decreased sheet resistance and leakage current, and improved thermal stability are displayed by the HF treated samples, which is consistent with STM and TEM results[[fileno]]2010109010017[[department]]物理

    Elevated blood pressure aggravates intracerebral hemorrhage-induced brain injury

    Get PDF
    Elevated blood pressure (BP) is commonly seen in patients with intracerebral hemorrhage (ICH), and is independently associated with poor functional outcomes. Little is known about how elevated BP influences ICH-related brain injury. In the present study, we investigated the physiological and brain histological changes, as well as functional recovery following ICH in renovascular hypertensive rats. Renovascular hypertension (RVHT) was achieved by applying a silver clip onto the left renal artery of adult Sprague-Dawley rats. ICH was induced by an intrastriatal injection of bacterial collagenase IV about 5-6 weeks after left renal artery clipping or the sham operation. Following induction of ICH, both the normotensive and RVHT rats demonstrated an ultra-acute elevation in BP. Elevated BP increased hematoma volume, brain swelling, and apoptosis in the perihematomal areas. Brain degeneration, including local atrophy and lateral ventricle enlargement, was greater in the RVHT rats. In addition, many proliferating cells were seen over the ipsilateral striatum in the RVHT rats after ICH. The modified limb placing tests were done weekly for 3 weeks. In line with the histological damage, elevated BP worsened neurological deficits. These results suggest that ICH in the hypertensive rats mimics the clinical scenario of hypertensive ICH and may provide a platform to study the mechanisms of ICH-induced brain injury and potential therapies for ICH. © 2011, Mary Ann Liebert, Inc.published_or_final_versio

    Multi-agent coalition formation in power transmission planning

    Get PDF
    Deregulation and restructuring have become unavoidable trends to the power industry recently in order to increase its efficiency, to reduce operation costs, or to provide customers better services. The once centralized system planning and management must be remodeled to reflect the changes in the market environment. We have proposed and developed a multi-agent based system to assist players, such as, owners of power generation stations, owners of transmission lines, and groups of consumers, in the same market to select partners to form coalitions. The system provides users with a cooperation plan and its associated cost allocation plan for the users to support their decision making process. Bilateral Shapley Value (BSV) was selected as the theoretical foundation to develop the system. The multi-agent system was developed by the combination of IDEAS and Tcl/Tk.published_or_final_versio

    Solution structure of the dimerization domain of the eurkaryotic stalk P1/P2 complex reveals the structural organization of the eukaryotic stalk

    Get PDF
    Poster Presentation: abstract A01The lateral ribosomal stalk is responsible for the kingdom‐specific binding of translation factors and activation of GTP hydrolysis during protein synthesis. The eukaryotic stalk consists of the scaffold P0 protein which binds two copies of P1/P2 hetero‐dimers to form a P0(P1/P2)2 pentameric P‐complex. The structure of the eukaryotic stalk is currently not known. To provide a better understanding on the structural organization of eukaryotic stalk, we have determined the solution structure of the N‐terminal dimerization domain …postprin

    On epidemic modeling in real time: An application to the 2009 Novel A (H1N1) influenza outbreak in Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management of emerging infectious diseases such as the 2009 influenza pandemic A (H1N1) poses great challenges for real-time mathematical modeling of disease transmission due to limited information on disease natural history and epidemiology, stochastic variation in the course of epidemics, and changing case definitions and surveillance practices.</p> <p>Findings</p> <p>The Richards model and its variants are used to fit the cumulative epidemic curve for laboratory-confirmed pandemic H1N1 (pH1N1) infections in Canada, made available by the Public Health Agency of Canada (PHAC). The model is used to obtain estimates for turning points in the initial outbreak, the basic reproductive number (R<sub>0</sub>), and for expected final outbreak size in the absence of interventions. Confirmed case data were used to construct a best-fit 2-phase model with three turning points. R<sub>0 </sub>was estimated to be 1.30 (95% CI 1.12-1.47) for the first phase (April 1 to May 4) and 1.35 (95% CI 1.16-1.54) for the second phase (May 4 to June 19). Hospitalization data were also used to fit a 1-phase model with R<sub>0 </sub>= 1.35 (1.20-1.49) and a single turning point of June 11.</p> <p>Conclusions</p> <p>Application of the Richards model to Canadian pH1N1 data shows that detection of turning points is affected by the quality of data available at the time of data usage. Using a Richards model, robust estimates of R<sub>0 </sub>were obtained approximately one month after the initial outbreak in the case of 2009 A (H1N1) in Canada.</p
    corecore