61 research outputs found

    Head Mounted Display with Curved Display Screen, Curved Tunable Focus Liquid Crystal Micro-Lens and First and Second Curved Black Masks Corresponding independently to One of the Right and Left Eye

    Get PDF
    Systems, methods, apparatus and devices for head mounted stereoscopic 3-D display devices using the tunable focus liquid crystal micro-lens array eye to produce eye accommodation information. A liquid crystal display panel displays stereoscopic images and uses tunable liquid crystal micro-lens array to change the diopter of the display pixels to provide eye accommodation information. The head mounted display device includes a planar display screen, planar tunable liquid crystal micro-lens array and planar black mask. The display device may optionally include a bias lens. In an embodiment, the display device also includes a backlight and a prism sheet for displaying the images on the display screen. The display screen, tunable liquid crystal micro-lens array, black mask and optional backlight and prism may be flat or curved

    Vertical Alignment Liquid Crystal Displays with High Transmittance and Wide View Angle

    Get PDF
    Structures, devices, systems and methods of using multi-domain vertical alignment liquid crystal displays with high transmittance, high contrast ratio and wide view angle in which at least one of the electrode substrates has circular or ring-shaped openings, such as holes or slits. Circular or ring-shaped patterns for openings and electrodes have not been used in the construction of a liquid crystal display. The new multi-domain vertical alignment (MDVA) liquid crystal display is particularly suitable for liquid crystal display television and computer monitor applications

    Flower Shaped Vertical Alignment Liquid Crystal Display with Wide Viewing Angle and Fast response time

    Get PDF
    A novel vertical alignment liquid crystal display with a structure having a flower-shaped vertical alignment (FVA) has the properties of fast response, high contrast ratio and a wide view angle. The method for making the device and structure of the FVA comprises the arrangement of: a first substrate with a protrusion shaped electrode as the pixel electrode; and a second substrate as the common electrode; aligning layers formed on said first and second substrates providing liquid crystal vertical alignment; liquid crystal materials filling a space between said first and second substrates as a liquid crystal cell; a linear polarizer and wide band quarter-wave film forming a circular polarizer; and, said circular polarizer disposed on exterior surfaces of said liquid crystal cell. When voltage is applied to the device, the liquid crystal (LC) director distribution looks like a flower blossom

    Head Mounted Display with Eye Accommodation having 3-D Image Producing System Consisting of, For Each Eye, One Single Planar Display Screen, One Single Planar Tunable Focus LC Micro-Lens Array, One Single Planar Black Mask and Bias Lens

    Get PDF
    Systems, methods, apparatus and devices for head mounted stereoscopic 3-D display devices using the tunable focus liquid crystal micro-lens array eye to produce eye accommodation information. A liquid crystal display panel displays stereoscopic images and uses tunable liquid crystal micro-lens array to change the diopter of the display pixels to provide eye accommodation information. The head mounted display device includes a planar display screen, planar tunable liquid crystal micro-lens array and planar black mask. The display device may optionally include a bias lens. In an embodiment, the display device also includes a backlight and a prism sheet for displaying the images on the display screen. The display screen, tunable liquid crystal micro-lens array, black mask and optional backlight and prism may be flat or curved

    Liquid crystal display devices with high transmittance and wide viewing angle

    Get PDF
    Apparatus, methods, systems and devices for high aperture ratio, high transmittance, and wide viewing angle liquid crystal display having first and second substrates each with an alignment layer and polarizer on the interior and exterior surface thereof and a liquid crystal material therebetween forming plural pixels each having a common electrode group and a pixel electrode group each having at least one common and pixel electrode. A fringe field drives the molecules in the regions above and below the electrodes and a horizontal field drives the molecules between the electrode groups to achieve high transmittance. In an embodiment an insulating layer separates the substrate and alignment layer and the pixel electrodes are on the substrate and the common electrodes are on the insulating layer. In another embodiment a compensation film is layered between one of the substrates and corresponding polarizer

    Fast Response in-plane-switching pi-cell liquid crystal displays

    Get PDF
    Transmissive liquid crystal displays having response time that can be approximately 2 to approximately 3 times faster than conventional displays. The displays adjust the rubbing angles to above approximately 20 degrees and preferably between approximately 30 and approximately 40 degrees. The displays have fast response times, enhanced brightness and increased gray scale linearity while maintaining wide viewing angle

    Wide-Acceptance-Angle Circular Polarizers (DIV)

    Get PDF
    A circular polarizer comprising a single linear polarizer producing a linear state of polarization and at least one phase retardation film layered with the single linear polarizer. In a first embodiment, the at least one phase retardation film includes at least one uniaxial A-plate phase retardation film and at least one uniaxial C-plate phase retardation film. In a second embodiment of the invention, the circular polarizer includes a linear polarizer and at least one biaxial phase retardation film layered with the linear polarizer. In another example of the circular polarize of the second embodiment, at least one uniaxial A-plate phase retardation film and/or at least one uniaxial C-plate phase retardation film is also layer with the linear polarize and the biaxial phase retardation film

    Transflective LCD Using Multilayer Dielectric Film Transflector

    Get PDF
    A novel transflective liquid crystal display (LCD) is provided with a multilayer dielectric film transflector. The dielectric transflector is composed of alternating high and low refractive index dielectric material layers deposited directly on the inner side of the LCD substrate to avoid parallax. The transmittance of the dielectric transflector can vary from approximately 5% to approximately 95% by simply adjusting the individual dielectric layer thickness and the arrangement of layers. The thickness of the 10-layer film is approximately 700 nm, which does not affect the voltage drop on the LC. Two structures of the dielectric film using different positions of the materials of construction are provided and demonstrated. Such a transflective LCD exhibits outstanding features, such as, robust dielectric film, single cell gap, no parallax, and a simple fabrication process

    High Efficiency Permanent Magnet Machine

    Get PDF
    The present invention is a high efficiency permanent magnet machine capable of maintaining high power density. The machine is operable over a wide range of power output. The improved efficiency is due in part to copper wires with a current density lower than traditional designs and larger permanent magnets coupled with a large air gap. In a certain embodiment wide stator teeth are used to provide additional improved efficiency through significantly reducing magnetic saturation resulting in lower current. The machine also has a much smaller torque angle than that in traditional design at rated load and thus has a higher overload handling capability and improved efficiency. In addition, when the machine is used as a motor, an adaptive phase lag compensation scheme helps the sensorless field oriented control (FOC) scheme to perform more accurately

    Full color transflective cholesteric liquid crystal display with slant reflectors above transmissive pixels

    Get PDF
    A device and method for making full color cholesteric displays such as a narrow band and a broad band cholesteric display using high birefringence LC materials with color filtering processes. The invention includes positioning slant reflector(s) in the transmissive portion of the display to reflect backlight into reflection pixels. The LCD can display the same color images in both reflective and transmissive modes, maintain good readability in any ambient, has low power consumption, high brightness, full color capability and has a fabrication process that is compatible with conventional LCD fabrication
    corecore