110,084 research outputs found

    Asteroseismology of the δ\delta Scuti star HD 50844

    Full text link
    Aims. We aim to probe the internal structure and investigate more detailed information of the δ\delta Scuti star HD 50844 with asteroseismology. Methods. We analyse the observed frequencies of the δ\delta Scuti star HD 50844 obtained by Balona (2014), and search for possible multiplets based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 by means of the rotational splitting only. We then compare them with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results. There are three multiplets including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree ll and azimuthal number mm are unique. The corresponding rotational period of HD 50844 is found to be 2.44−0.08+0.13^{+0.13}_{-0.08} days. The physical parameters of HD 50844 are well limited in a small region by three modes identified as nonradial ones (f11f_{11}, f22f_{22}, and f29f_{29}) and by the fundamental radial mode (f4f_{4}). Our results show that the three nonradial modes (f11f_{11}, f22f_{22}, and f29f_{29}) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4f_{4}) mainly represents the property of the stellar envelope. In order to fit these four pulsation modes, both the helium core and the stellar envelope must be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ±\pm 0.004 M⊙M_{\odot} for the first time. The physical parameters of HD 50844 are determined to be M=M= 1.81 ±\pm 0.01 M⊙M_{\odot}, Z=Z= 0.008 ±\pm 0.001. Teff=T_{\rm eff}= 7508 ±\pm 125 K, logg=g= 3.658 ±\pm 0.004, R=R= 3.300 ±\pm 0.023 R⊙R_{\odot}, L=L= 30.98 ±\pm 2.39 L⊙L_{\odot}.Comment: 11 pages, 7 figures, 6 tables, accepted for publication in A&

    Gradient design of metal hollow sphere (MHS) foams with density gradients

    Get PDF
    This is the post-print version of the final paper published in Composites Part B: Engineering. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Metal hollow sphere (MHS) structures with a density gradient have attracted increasing attention in the effort to pursue improved energy absorption properties. In this paper, dynamic crushing of MHS structures of different gradients are discussed, with the gradients being received by stacks of hollow spheres of the same external diameter but different wall thicknesses in the crushing direction. Based on the dynamic performance of MHS structures with uniform density, a crude semi-empirical model is developed for the design of MHS structures in terms of gradient selections for energy absorption and protection against impact. Following this, dynamic responses of density graded MHS foams are comparatively analyzed using explicit finite element simulation and the proposed formula. Results show that the simple semi-empirical model can predict the response of density gradient MHS foams and is ready-to-use in the gradient design of MHS structures.The National Science Foundation of China and the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology

    X-Ray Flares from Postmerger Millisecond Pulsars

    Full text link
    Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The X-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy release time scales. Here we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection--driven explosive events then occur, leading to multiple X-ray flares minutes after the original gamma-ray burst.Comment: 10 pages, published in Scienc
    • …
    corecore