84 research outputs found

    Rapid prediction of crucial hotspot interactions for icosahedral viral capsid self-assembly by energy landscape atlasing validated by mutagenesis

    Full text link
    Icosahedral viruses have their infectious genome encapsulated by a shell assembled by a multiscale process, starting from an integer multiple of 60 viral capsid or coat protein (VP) monomers. We predict and validate inter-atomic hotspot interactions between VP monomers that are important for the assembly of 3 icosahedral viral capsids: Adeno Associated Virus serotype 2 (AAV2) and Minute Virus of Mice (MVM), both T=1 single stranded DNA viruses, and Bromo Mosaic Virus (BMV), a T=3 single stranded RNA virus. Experimental validation is by in-vitro, site-directed mutagenesis data found in literature. We combine ab-initio predictions at two scales: at the interface-scale, we predict the importance (cruciality) of an interaction for successful subassembly across each interface between VP monomers; and at the capsid-scale, we predict the cruciality of an interface for successful capsid assembly. At the interface-scale, we measure cruciality by changes in the capsid free-energy landscape partition function when an interaction is removed. The partition function computation uses atlases of interface subassembly landscapes, rapidly generated by a novel geometric method and curated opensource software EASAL (efficient atlasing and search of assembly landscapes). At the capsid-scale, cruciality of an interface for successful assembly of the capsid is based on combinatorial entropy. Our study goes from resource-light, multiscale computational predictions of crucial hotspot inter-atomic interactions to validation using data on site-directed mutagenesis' effect on capsid assembly. By reliably and rapidly narrowing down target interactions, (no more than 1.5 hours per interface on a laptop with Intel Core i5-2500K 3.2Ghz CPU and 8GB of RAM) our predictions can inform and reduce time-consuming in-vitro and in-vivo experiments, or more computationally intensive in-silico analyses

    The Insulation Properties of Oil-Impregnated Insulation Paper Reinforced with Nano-TiO 2

    Get PDF
    Oil-impregnated insulation paper has been widely used in transformers because of its low cost and desirable physical and electrical properties. However, research to improve the insulation properties of oil-impregnated insulation paper is rarely found. In this paper, nano-TiO2 was used to stick to the surface of cellulose which was used to make insulation paper. After oil-impregnated insulation paper reinforced by nano-TiO2 was prepared, the tensile strength, breakdown strength, and dielectric properties of the oil-impregnated insulation paper were investigated to determine whether the modified paper had a better insulation performance. The results show that there were no major changes in tensile strength, and the value of the breakdown strength was greatly improved from 51.13 kV/mm to 61.78 kV/mm. Also, the values of the relative dielectric constant, the dielectric loss, and conductivity declined. The discussion reveals that nano-TiO2 plays a major role in the phenomenon. Because of the existence of nano-TiO2, the contact interface of cellulose and oil was changed, and a large number of shallow traps were produced. These shallow traps changed the insulation properties of oil-impregnated insulation paper. The results show that the proposed solution offers a new method to improve the properties of oil-impregnated insulation paper

    Hypothalamic Neuroendocrine Functions in Rats with Dihydrotestosterone-Induced Polycystic Ovary Syndrome: Effects of Low-Frequency Electro-Acupuncture

    Get PDF
    Adult female rats continuously exposed to androgens from prepuberty have reproductive and metabolic features of polycystic ovary syndrome (PCOS). We investigated whether such exposure adversely affects estrous cyclicity and the expression and distribution of gonadotropin-releasing hormone (GnRH), GnRH receptors, and corticotrophin-releasing hormone (CRH) in the hypothalamus and whether the effects are mediated by the androgen receptor (AR). We also assessed the effect of low-frequency electro-acupuncture (EA) on those variables. At 21 days of age, rats were randomly divided into three groups (control, PCOS, and PCOS EA; n = 12/group) and implanted subcutaneously with 90-day continuous-release pellets containing vehicle or 5α-dihydrostestosterone (DHT). From age 70 days, PCOS EA rats received 2-Hz EA (evoking muscle twitches) five times/week for 4–5 weeks. Hypothalamic protein expression was measured by immunohistochemistry and western blot. DHT-treated rats were acyclic, but controls had regular estrous cycles. In PCOS rats, hypothalamic medial preoptic AR protein expression and the number of AR- and GnRH-immunoreactive cells were increased, but CRH was not affected; however, GnRH receptor expression was decreased in both the pituitary and hypothalamus. Low-frequency EA restored estrous cyclicity within 1 week and reduced the elevated hypothalamic GnRH and AR expression levels. EA did not affect GnRH receptor or CRH expression. Interestingly, nuclear AR co-localized with GnRH in the hypothalamus. Thus, rats with DHT-induced PCOS have disrupted estrous cyclicity and an increased number of hypothalamic cells expressing GnRH, most likely mediated by AR activation. Repeated low-frequency EA normalized estrous cyclicity and restored GnRH and AR protein expression. These results may help explain the beneficial neuroendocrine effects of low-frequency EA in women with PCOS

    Removal of Carbamazepine in Aqueous Solution by CoS<sub>2</sub>/Fe<sup>2+</sup>/PMS Process

    No full text
    Carbamazepine (CBZ), as a typical pharmaceutical and personal care product (PPCP), cannot be efficiently removed by the conventional drinking water and wastewater treatment process. In this work, the CoS2/Fe2+/PMS process was applied for efficient elimination of CBZ. The CBZ removal efficiency of CoS2/Fe2+/PMS was 2.5 times and 23 times higher than that of CoS2/PMS and Fe2+/PMS, respectively. The intensity of DMPO-HO• and DMPO-SO4•− followed the order of Fe2+/PMS 2/PMS 2/Fe2+/PMS, also suggesting the CoS2/Fe2+/PMS process has the highest oxidation activity. The effects of reaction conditions (e.g., CoS2 dosage, Fe2+ concentration, PMS concentration, initial CBZ concentration, pH, temperature) and water quality parameters (e.g., SO42−, NO3−, H2PO4−, Cl−, NH4+, humic acid) on the degradation of CBZ were also studied. Response surface methodology analysis was carried out to obtain the best conditions for the removal of CBZ, which are: Fe2+ = 70 µmol/L, PMS = 240 µmol/L, CoS2 = 0.59 g/L. The sustainability test demonstrated that the repeated use of CoS2 for 8 successive cycles resulted in little function decrease (2/Fe2+/PMS may be a promising method for advanced treatment of tailwater from sewage treatment plant

    Mining expression and prognosis of FOLR1 in ovarian cancer by using Oncomine and Kaplan-Meier plotter

    No full text
    Objective: To further explore folate receptor 1 (FOLR1) gene expression in ovarian cancer and its association with patients’ prognosis by deep mining the Oncomine and Kaplan-Meier plotter databases

    Cellulosic particles accumulation phenomenon and its effect on the electric field distribution in natural ester and mineral oil under AC electric field

    No full text
    Natural esters usually show higher dielectric losses, a higher conductivity and higher viscosity. It has become clear that more research is required to ascertain the long-term safe operation of transformers where natural ester is used. This paper made comparative experimental analysis of the cellulosic particles accumulation and its effect on the electric field distribution in natural ester and mineral oil under AC electric field. When the AC voltage was applied on the oil with cellulose particles, it is worth noting that in mineral oil, the particles were concentrated at the end of the spherical positive and negative electrodes, while in the natural ester, the particles are concentrated in the sphere of the positive and negative electrodes. The adsorption of fiber particles decreases the field intensity near the spherical electrode, however, increases the field strength in the middle region of the electrode. Besides, in the case of particles adsorbed on the electrode surface, the maximum electric field strength appears at the particle edge in mineral oil is a little higher than the value in natural ester

    DECCo-A Dynamic Task Scheduling Framework for Heterogeneous Drone Edge Cluster

    No full text
    The heterogeneity of unmanned aerial vehicle (UAV) nodes and the dynamic service demands make task scheduling particularly complex in the drone edge cluster (DEC) scenario. In this paper, we provide a universal intelligent collaborative task scheduling framework, named DECCo, which schedules dynamically changing task requests for the heterogeneous DEC. Benefiting from the latest advances in deep reinforcement learning (DRL), DECCo autonomously learns task scheduling strategies with high response rates and low communication latency through a collaborative Advantage Actor–Critic algorithm, which avoids the interference of resource overload and local downtime while ensuring load balancing. To better adapt to the real drone collaborative scheduling scenario, DECCo switches between heuristic and DRL-based scheduling solutions based on real-time scheduling performance, thus avoiding suboptimal decisions that severely affect Quality of Service (QoS) and Quality of Experience (QoE). With flexible parameter control, DECCo can adapt to various task requests on drone edge clusters. Google Cluster Usage Traces are used to verify the effectiveness of DECCo. Therefore, our work represents a state-of-the-art method for task scheduling in the heterogeneous DEC
    • …
    corecore