125,051 research outputs found

    Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays

    Full text link
    The lifetime differences of bottom hadrons are known to be properly explained within the framework of heavy quark effective field theory(HQEFT) of QCD via the inverse expansion of the dressed heavy quark mass. In general, the spectrum around the endpoint region is not well behaved due to the invalidity of 1/mQ1/m_Q expansion near the endpoint. The curve fitting method is adopted to treat the endpoint behavior. It turns out that the endpoint effects are truly small and the explanation on the lifetime differences in the HQEFT of QCD is then well justified. The inclusion of the endpoint effects makes the prediction on the lifetime differences and the extraction on the CKM matrix element Vcb|V_{cb}| more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio

    Phase transitions in exactly solvable decorated model of localized Ising spins and itinerant electrons

    Full text link
    A hybrid lattice-statistical model of doubly decorated two-dimensional lattices, which have localized Ising spins at its nodal sites and itinerant electrons delocalized over decorating sites, is exactly solved with the help of a generalized decoration-iteration transformation. Under the assumption of a quarter filling of each couple of the decorating sites, the ground state constitutes either spontaneously long-range ordered ferromagnetic or ferrimagnetic phase in dependence on whether the ferromagnetic or antiferromagnetic interaction between the localized Ising spins and itinerant electrons is considered. The critical temperature of the spontaneously long-range ordered phases monotonically increases upon strengthening the ratio between the kinetic term and the Ising-type exchange interaction.Comment: 4 pages, 3 figures, presented at International Conference on Magnetism 2009 to be held on July 26-31 in Karlsruhe, Germany. submitted to J. Phys.: Conf. Se

    Spin Polarisability of the Nucleon in the Heavy Baryon Effective Field Theory

    Full text link
    We have constructed a heavy baryon effective field theory with photon as an external field in accordance with the symmetry requirements similar to the heavy quark effective field theory. By treating the heavy baryon and anti-baryon equally on the same footing in the effective field theory, we have calculated the spin polarisabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon at third order and at fourth-order of the spin-dependent Compton scattering. At leading order (LO), our results agree with the corresponding results of the heavy baryon chiral perturbation theory, at the next-to-leading order(NLO) the results show a large correction to the ones in the heavy baryon chiral perturbation theory due to baryon-antibaryon coupling terms. The low energy theorem is satisfied both at LO and at NLO. The contributions arising from the heavy baryon-antibaryon vertex were found to be significant and the results of the polarisabilities obtained from our theory is much closer to the experimental data.Comment: 21pages, title changed, minimal correction

    Dynamics of Neural Networks with Continuous Attractors

    Full text link
    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.Comment: 6 pages, 7 figures with 4 caption

    A Consistent Calculation of Heavy Meson Decay Constants and Transition Wave Functions in the Complete HQEFT

    Full text link
    Within the complete heavy quark effective field theory (HQEFT), the QCD sum rule approach is used to evaluate the decay constants including 1/m_Q corrections and the Isgur-Wise function and other additional important wave functions concerned at 1/m_Q for the heavy-light mesons. The 1/m_Q corrections to the scaling law f_M \sim F/\sqrt{m_M} are found to be small in HQEFT, which demonstrates again the validity of 1/m_Q expansion in HQEFT. It is also shown that the residual momentum v.k of heavy quark within hadrons does be around the binding energy \bar{\Lambda} of the heavy hadrons. The calculations presented in this paper provide a consistent check on the HQEFT and shows that the HQEFT is more reliable than the usual HQET for describing a slightly off-mass shell heavy quark within hadron as the usual HQET seems to lead to the breakdown of 1/m_Q expansion in evaluating the meson decay constants. It is emphasized that the introduction of the `dressed heavy quark' mass is useful for the heavy-light mesons (Qq) with m_Q >> \bar{\Lambda} >> m_q, while for heavy-heavy bound states (\psi_1\psi_2) with masses m_1, m_2 >> \bar{\Lambda}, like bottom-charm hadrons or similarly for muonium in QED, one needs to treat both particles as heavy effective particles via 1/m_1 and 1/m_2 expansions and redefine the effective bound states and modified `dressed heavy quark' masses within the HQEFT.Comment: 20 pages, revtex, 22 figures, axodraw.sty, two irrelevant figures are moved awa

    Semileptonic B Decays into Excited Charmed Mesons (D1D_1, D2D^*_2) in HQEFT

    Get PDF
    Exclusive semileptonic B decays into excited charmed mesons (D1D_1, D2D^*_2) are studied up to the order of 1/mQ1/m_Q in the framework of the heavy quark effective field theory (HQEFT), which contains the contributions of both particles and antiparticles. Two wave functions η0b\eta^b_0 and η0c\eta^c_0, which characterize the contributions from the kinematic operator at the order of 1/mQ1/m_Q, are calculated by using QCD sum rule approach in HQEFT. Zero recoil values of other two wave functions κ1\kappa'_1 and κ2\kappa'_2 are extracted from the excited charmed-meson masses. Possible effects from the spin-dependent transition wave functions which arise from the magnetic operators at the order of 1/mQ1/m_Q are analyzed. It is shown that the experimental measurements for the branching ratios of BD1lνB \to D_1 l\nu and BD2lνB \to D^*_2 l\nu can be understood in the framework of HQEFT.Comment: 27 pages, RevTex, 4 figures, 3 tables, to be published in IJMP

    Techniques for Accurate Parallax Measurements for 6.7-GHz Methanol Masers

    Full text link
    The BeSSeL Survey is mapping the spiral structure of the Milky Way by measuring trigonometric parallaxes of hundreds of maser sources associated with high-mass star formation. While parallax techniques for water masers at high frequency (22 GHz) have been well documented, recent observations of methanol masers at lower frequency (6.7 GHz) have revealed astrometric issues associated with signal propagation through the ionosphere that could significantly limit parallax accuracy. These problems displayed as a "parallax gradient" on the sky when measured against different background quasars. We present an analysis method in which we generate position data relative to an "artificial quasar" at the target maser position at each epoch. Fitting parallax to these data can significantly mitigate the problems and improve parallax accuracy

    Trigonometric Parallaxes of High Mass Star Forming Regions: the Structure and Kinematics of the Milky Way

    Full text link
    Over 100 trigonometric parallaxes and proper motions for masers associated with young, high-mass stars have been measured with the BeSSeL Survey, a VLBA key science project, the EVN, and the Japanese VERA project. These measurements provide strong evidence for the existence of spiral arms in the Milky Way, accurately locating many arm segments and yielding spiral pitch angles ranging from 7 to 20 degrees. The widths of spiral arms increase with distance from the Galactic center. Fitting axially symmetric models of the Milky Way with the 3-D position and velocity information and conservative priors for the solar and average source peculiar motions, we estimate the distance to the Galactic center, Ro, to be 8.34 +/- 0.16 kpc, a circular rotation speed at the Sun, To, to be 240 +/- 8 km/s, and a rotation curve that is nearly flat (a slope of -0.2 +/- 0.4 km/s/kpc) between Galactocentric radii of 5 and 16 kpc. Assuming a "universal" spiral galaxy form for the rotation curve, we estimate the thin disk scale length to be 2.44 +/- 0.16 kpc. The parameters Ro and To are not highly correlated and are relatively insensitive to different forms of the rotation curve. Adopting a theoretically motivated prior that high-mass star forming regions are in nearly circular Galactic orbits, we estimate a global solar motion component in the direction of Galactic rotation, Vsun = 14.6 +/- 5.0 km/s. While To and Vsun are significantly correlated, the sum of these parameters is well constrained, To + Vsun = 255.2 +/- 5.1 km/s, as is the angular speed of the Sun in its orbit about the Galactic center, (To + Vsun)/Ro = 30.57 +/- 0.43 km/s/kpc. These parameters improve the accuracy of estimates of the accelerations of the Sun and the Hulse-Taylor binary pulsar in their Galactic orbits, significantly reducing the uncertainty in tests of gravitational radiation predicted by general relativity.Comment: 38 pages, 6 tables, 6 figures; v2 fixed typos and updated pulsar section; v3 replaced fig 2 (wrong file
    corecore