272,442 research outputs found
Tunneling-induced restoration of classical degeneracy in quantum kagome ice
Quantum effect is expected to dictate the behavior of physical systems at low temperature. For quantum magnets with geometrical frustration, quantum fluctuation usually lifts the macroscopic classical degeneracy, and exotic quantum states emerge. However, how different types of quantum processes entangle wave functions in a constrained Hilbert space is not well understood. Here, we study the topological entanglement entropy and the thermal entropy of a quantum ice model on a geometrically frustrated kagome lattice. We find that the system does not show a Z(2) topological order down to extremely low temperature, yet continues to behave like a classical kagome ice with finite residual entropy. Our theoretical analysis indicates an intricate competition of off-diagonal and diagonal quantum processes leading to the quasidegeneracy of states and effectively, the classical degeneracy is restored
Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays
The lifetime differences of bottom hadrons are known to be properly explained
within the framework of heavy quark effective field theory(HQEFT) of QCD via
the inverse expansion of the dressed heavy quark mass. In general, the spectrum
around the endpoint region is not well behaved due to the invalidity of
expansion near the endpoint. The curve fitting method is adopted to treat the
endpoint behavior. It turns out that the endpoint effects are truly small and
the explanation on the lifetime differences in the HQEFT of QCD is then well
justified. The inclusion of the endpoint effects makes the prediction on the
lifetime differences and the extraction on the CKM matrix element
more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio
New sum rule identities and duality relation for the Potts -point correlation function
It is shown that certain sum rule identities exist which relate correlation
functions for Potts spins on the boundary of a planar lattice for . Explicit expressions of the identities are obtained for . It is also
shown that the identities provide the missing link needed for a complete
determination of the duality relation for the -point correlation function.
The duality relation is obtained explicitly. More generally we deduce the
number of correlation identities for any as well as an inversion relation
and a conjecture on the general form of the duality relation.Comment: 11 pages in RevTeX, 4 PS figures, submitted to PR
Direct and secondary nuclear excitation with x-ray free-electron lasers
The direct and secondary nuclear excitation produced by an x-ray free
electron laser when interacting with a solid-state nuclear target is
investigated theoretically. When driven at the resonance energy, the x-ray free
electron laser can produce direct photoexcitation. However, the dominant
process in that interaction is the photoelectric effect producing a cold and
very dense plasma in which also secondary processes such as nuclear excitation
by electron capture may occur. We develop a realistic theoretical model to
quantify the temporal dynamics of the plasma and the magnitude of the secondary
excitation therein. Numerical results show that depending on the nuclear
transition energy and the temperature and charge states reached in the plasma,
secondary nuclear excitation by electron capture may dominate the direct
photoexcitation by several orders of magnitude, as it is the case for the 4.8
keV transition from the isomeric state of Mo, or it can be negligible,
as it is the case for the 14.4 keV M\"ossbauer transition in
. These findings are most relevant for future nuclear quantum
optics experiments at x-ray free electron laser facilities.Comment: 17 pages, 7 figures; minor corrections made; accepted by Physics of
Plasma
A More Precise Extraction of |V_{cb}| in HQEFT of QCD
The more precise extraction for the CKM matrix element |V_{cb}| in the heavy
quark effective field theory (HQEFT) of QCD is studied from both exclusive and
inclusive semileptonic B decays. The values of relevant nonperturbative
parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD.
Using the most recent experimental data for B decay rates, |V_{cb}| is updated
to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l
\nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l
\nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from
inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure
- …