5,901 research outputs found

    Experimental realization of non-Abelian gauge potentials and topological Chern state in circuit system

    Full text link
    Gauge fields, both Abelian and non-Abelian type, play an important role in modern physics. It prompts extensive studies of exotic physics on a variety of platforms. In this work, we present building blocks, consist of capacitors and inductors, for implementing non-Abelian gauge fields in circuit system. Based on these building blocks, we experimentally synthesize the Rashba-Dresselhaus spin-orbit interaction. Using operational amplifier, to break the time reversal symmetry, we further provide a scheme for designing the topological Chern circuit system. By measuring the chiral edge state of the Chern circuit, we experimentally confirm its topological nature. Our scheme offers a new route to study physics related to non-Abelian gauge field using circuit systems

    Pentaquark states with the QQQqqˉQQQq\bar{q} configuration in a simple model

    Full text link
    We discuss the mass splittings for the SS-wave triply heavy pentaquark states with the QQQqqˉQQQq\bar{q} (Q=b,c;q=u,d,s)(Q=b,c;q=u,d,s) configuration which is a mirror structure of QQˉqqqQ\bar{Q}qqq. The latter configuration is related with the nature of Pc(4380)P_c(4380) observed by the LHCb Collaboration. The considered pentaquark masses are roughly estimated with a simple method. One finds that such states are probably not narrow even if they do exist. This leaves room for molecule interpretation for a state around the low-lying threshold of a doubly heavy baryon and a heavy-light meson, e.g. ΞccD\Xi_{cc}D, if it were observed. As a by product, we conjecture that upper limits for the masses of the conventional triply heavy baryons can be determined by the masses of the conventional doubly heavy baryons.Comment: 19 pages, 1 figure, 10 tables; Version accepted by Eur. Phys. J.

    Absence of a transport signature of spin-orbit coupling in graphene with indium adatoms

    Full text link
    Enhancement of the spin-orbit coupling in graphene may lead to various topological phenomena and also find applications in spintronics. Adatom absorption has been proposed as an effective way to achieve the goal. In particular, great hope has been held for indium in strengthening the spin-orbit coupling and realizing the quantum spin Hall effect. To search for evidence of the spin-orbit coupling in graphene absorbed with indium adatoms, we carry out extensive transport measurements, i.e., weak localization magnetoresistance, quantum Hall effect and non-local spin Hall effect. No signature of the spin-orbit coupling is found. Possible explanations are discussed.Comment: 5 pages, 4 figures, with supplementary material

    A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter.

    Get PDF
    The principal barrier to the eradication of HIV/AIDS is the existence of latent viral reservoirs. One strategy to overcome this barrier is to use latency-reversing agents (LRAs) to reactivate the latent proviruses, which can then be eliminated by effective anti-retroviral therapy. Although a number of LRAs have been found to reactivate latent HIV, they have not been used clinically due to high toxicity and poor efficacy. In this study, we report the identification of a chalcone analogue called Amt-87 that can significantly reactivate the transcription of latent HIV provirses and act synergistically with known LRAs such as prostratin and JQ1 to reverse latency. Amt-87 works by activating the human transcriptional elongation factor P-TEFb, a CDK9-cyclin T1 heterodimer that is part of the super elongation complex (SEC) used by the viral encoded Tat protein to activate HIV transcription. Amt-87 does so by promoting the phosphorylation of CDK9 at the T-loop, liberating P-TEFb from the inactive 7SK snRNP, and inducing the formation of the Tat-SEC complex at the viral promoter. Together, our data reveal chalcones as a promising category of compounds that should be further explored to identify effective LRAs for targeted reversal of HIV latency
    • …
    corecore