87 research outputs found

    Research progress and prospect of interaction between rock engineering and geo-environments

    Get PDF

    Simulation for non-point source pollution based on QUAL2E in the Jinghe River, Shaanxi Province, China

    Get PDF
    Wang, J., Huo, A., Hu, A., Zhang, X., & Wu, Y. (March-April, 2017). Simulation for non-point source pollution based on QUAL2E in the Jinghe River, Shaanxi Province, China. Water Technology and Sciences (in Spanish), 8(2), 117-126. Water pollution in river basins is significantly influenced by point-source and non-point-source pollutants. Compared with point-source pollutants, the identification and quantification of non-point-source pollutants are critical but difficult issues in water environmental pollution studies. The Jinghe River is one of the main tributaries of the Weihe River. However, the non-point-source pollution of this river is not well understood. In order to analyze the sources of pointand non-point loads to river water, the river water quality model QUAL2E and Principal Component Analysis (PCA) & Factor Analysis (FA) were applied simultaneously to calculate the point- and non-point-source loads of ammonia nitrogen and nitrate nitrogen, respectively, in dry and wet seasons from 2002 to 2007. The results show that NO3 - -N can be associated with point-source pollution, such as domestic sewage in dry seasons, but non-point-source pollution generated by precipitation in wet seasons. NH4 +-N can be associated with point-source pollution throughout the year. The methods applied in this research provide reliable results on non-point-source pollution caused by storm runoff

    The Seepage Control of the Tunnel Excavated in High-Pressure Water Condition Using Multiple Times Grouting Method

    Get PDF
    Groundwater can cause many hazardous problems when a tunnel is excavating. Seepage force acting on the support structure and the tunnel surface cannot be negligible. Under high groundwater table condition, the seepage situation becomes more complex and it is more difficult to control the leakage of groundwater to flow into a tunnel. In the paper, a multiple times grouting method is proposed, and the mechanical deformation behavior of surrounding rock is analyzed using the FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) software according to the high groundwater table condition of the Hokusatsu tunnel. The results present that multiple times grouting can control leakage and the rock deformation well, compared with one-time grouting condition in rock breaking and high water pressure area. The seepage force decrease around the tunnel and the displacement is controlled effectively. The pore pressure reduces inside the grouting zone using a new kind of grouting material, which is high permeability ultramicro particle cement (average particle size 1.5 μm). In the test fieldwork, the grouting scheme reduces the maximum discharge from 300 t/h to 40 t/h, and there is not obvious deformation and abnormal stress in the tunnel. The multiple times grouting method proposed in this research is verified effectively and can supply a positive experience to on-site construction

    Risk of cardiac-related death in astrocytoma patients treated with chemotherapy: A competing risk analysis using the SEER database

    Get PDF
    PurposeTo explore the impact of chemotherapy on the risk of cardiac-related death in astrocytoma patients.MethodsWe retrospectively evaluated astrocytoma patients diagnosed between 1,975 and 2016 in the Surveillance, Epidemiology, and End Results (SEER) database. Using Cox proportional hazards models, we compared the risks of cardiac-related death between a chemotherapy group and non-chemotherapy group. Competing-risks regression analyses were used to evaluate the difference in cardiac-related death. Also, propensity score matching (PSM) was employed to reduce confounding bias. The robustness of these findings was evaluated by sensitivity analysis, and E values were calculated.ResultsA total of 14,834 patients diagnosed with astrocytoma were included. Chemotherapy (HR = 0.625, 95%CI: 0.444–0.881) was associated with cardiac-related death in univariate Cox regression analysis. Chemotherapy was an independent prognostic factor for a lower risk of cardiac-related death before (HR = 0.579, 95%CI: 0.409–0.82, P = 0.002) and after PSM (HR = 0.550, 95%CI: 0.367–0.823 P = 0.004). Sensitivity analysis determined that the E-value of chemotherapy was 2.848 and 3.038 before and after PSM.ConclusionsChemotherapy did not increase the risk of cardiac-related death in astrocytoma patients. This study highlights that cardio–oncology teams should provide comprehensive care and long-term monitoring for cancer patients, especially those with an increased risk of cardiovascular disease

    軟岩トンネルの変形メカニズムと支保設計、健全度評価に関する研究

    Get PDF
    長崎大学学位論文 学位記番号:博(工)甲第44号 学位授与年月日:平成29年9月20日Nagasaki University (長崎大学)課程博

    Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites

    No full text
    Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average length of these aggregations was about 3 μm. With the fraction of graphene increasing, the electrical conductivity of graphene/Cu2SnSe3 samples increased greatly while the Seebeck coefficient was decreased. The introduction of graphene nanosheets can reduce the thermal conductivity effectively resulting from the phonon scattering by the graphene interface. When the content of graphene exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3 composites starts to increase. The achieved highest figure of merit (ZT) for 0.25 vol % graphene/Cu2SnSe3 composite was 0.44 at 700 K

    Numerical Simulation of Natural Gas Hydrate Exploitation in Complex Structure Wells: Productivity Improvement Analysis

    No full text
    About 90% of the world’s natural gas hydrates (NGH) exist in deep-sea formations, a new energy source with great potential for exploitation. There is distance from the threshold of commercial exploitation based on the single well currently used. The complex structure well is an efficient and advanced drilling technology. The improvement of NGH productivity through various complex structure wells is unclear, and there is no more complete combing. Thus, in order to evaluate their gas production characteristics, we establish a mathematical model for exploitation of NGH, and then 13 sets of numerical models based on the geological parameters of the Nankai Trough in Japan are developed and designed, including a single vertical well, a single horizontal well, 1~4 branch vertical wells, 1~4 branch horizontal wells, and 2~4 branch cluster horizontal wells. The research results indicate that wells with complex structures represented by directional wells and multilateral wells can significantly increase the area of water and gas discharge, especially cluster wells, whose productivity can be increased by up to 2.2 times compared with single wells. Complex structural wells will play an irreplaceable role in the future industrialization of NGH
    corecore