523 research outputs found

    Global-Scale Resource Survey and Performance Monitoring of Public OGC Web Map Services

    Full text link
    One of the most widely-implemented service standards provided by the Open Geospatial Consortium (OGC) to the user community is the Web Map Service (WMS). WMS is widely employed globally, but there is limited knowledge of the global distribution, adoption status or the service quality of these online WMS resources. To fill this void, we investigated global WMSs resources and performed distributed performance monitoring of these services. This paper explicates a distributed monitoring framework that was used to monitor 46,296 WMSs continuously for over one year and a crawling method to discover these WMSs. We analyzed server locations, provider types, themes, the spatiotemporal coverage of map layers and the service versions for 41,703 valid WMSs. Furthermore, we appraised the stability and performance of basic operations for 1210 selected WMSs (i.e., GetCapabilities and GetMap). We discuss the major reasons for request errors and performance issues, as well as the relationship between service response times and the spatiotemporal distribution of client monitoring sites. This paper will help service providers, end users and developers of standards to grasp the status of global WMS resources, as well as to understand the adoption status of OGC standards. The conclusions drawn in this paper can benefit geospatial resource discovery, service performance evaluation and guide service performance improvements.Comment: 24 pages; 15 figure

    Coupling vibration model for hot rolling mills and its application

    Get PDF
    In this paper, we propose an effective mechanical-electrical-hydraulic-interfacial coupling vibration model for hot rolling mills and obtain a practical measure to relieve mill vibration. First, an experiment related to mill modulus control gain in automatic gauge control (AGC) is carried out during manufacturing. Rolling mill vibration is observed to gradually be enhanced with increasing mill modulus control gain. Then, to explain this phenomenon, the mechanical-electrical-hydraulic-interface coupling dynamic model is modeled based on Sims’ rolling force method. Finally, we analyze the influence of mill modulus control gain on the vibration numerically on the basis of the coupling dynamic model. Moreover, the agreement between the experiment result and the simulation result is confirmed and the measure reducing the mill modulus control gain is obtained to relieve mill vibration

    Learning Segmentation Masks with the Independence Prior

    Full text link
    An instance with a bad mask might make a composite image that uses it look fake. This encourages us to learn segmentation by generating realistic composite images. To achieve this, we propose a novel framework that exploits a new proposed prior called the independence prior based on Generative Adversarial Networks (GANs). The generator produces an image with multiple category-specific instance providers, a layout module and a composition module. Firstly, each provider independently outputs a category-specific instance image with a soft mask. Then the provided instances' poses are corrected by the layout module. Lastly, the composition module combines these instances into a final image. Training with adversarial loss and penalty for mask area, each provider learns a mask that is as small as possible but enough to cover a complete category-specific instance. Weakly supervised semantic segmentation methods widely use grouping cues modeling the association between image parts, which are either artificially designed or learned with costly segmentation labels or only modeled on local pairs. Unlike them, our method automatically models the dependence between any parts and learns instance segmentation. We apply our framework in two cases: (1) Foreground segmentation on category-specific images with box-level annotation. (2) Unsupervised learning of instance appearances and masks with only one image of homogeneous object cluster (HOC). We get appealing results in both tasks, which shows the independence prior is useful for instance segmentation and it is possible to unsupervisedly learn instance masks with only one image.Comment: 7+5 pages, 13 figures, Accepted to AAAI 201

    StegNet: Mega Image Steganography Capacity with Deep Convolutional Network

    Full text link
    Traditional image steganography often leans interests towards safely embedding hidden information into cover images with payload capacity almost neglected. This paper combines recent deep convolutional neural network methods with image-into-image steganography. It successfully hides the same size images with a decoding rate of 98.2% or bpp (bits per pixel) of 23.57 by changing only 0.76% of the cover image on average. Our method directly learns end-to-end mappings between the cover image and the embedded image and between the hidden image and the decoded image. We~further show that our embedded image, while with mega payload capacity, is still robust to statistical analysis.Comment: https://github.com/adamcavendish/StegNet-Mega-Image-Steganography-Capacity-with-Deep-Convolutional-Networ

    FAC2^2E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition

    Full text link
    Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks. However, such a paradigm fails to comprehensively differentiate the fine-grained language and cognitive skills, rendering the lack of sufficient interpretation to LLMs' capabilities. In this paper, we present FAC2^2E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation. Specifically, we formulate LLMs' evaluation in a multi-dimensional and explainable manner by dissociating the language-related capabilities and the cognition-related ones. Besides, through extracting the intermediate reasoning from LLMs, we further break down the process of applying a specific capability into three sub-steps: recalling relevant knowledge, utilizing knowledge, and solving problems. Finally, FAC2^2E evaluates each sub-step of each fine-grained capability, providing a two-faceted diagnosis for LLMs. Utilizing FAC2^2E, we identify a common shortfall in knowledge utilization among models and propose a straightforward, knowledge-enhanced method to mitigate this issue. Our results not only showcase promising performance enhancements but also highlight a direction for future LLM advancements.Comment: Work in Progres
    • …
    corecore