336 research outputs found

    A Universal Receiver for Uplink NOMA Systems

    Full text link
    Given its capability in efficient radio resource sharing, non-orthogonal multiple access (NOMA) has been identified as a promising technology in 5G to improve the system capacity, user connectivity, and scheduling latency. A dozen of uplink NOMA schemes have been proposed recently and this paper considers the design of a universal receiver suitable for all potential designs of NOMA schemes. Firstly, a general turbo-like iterative receiver structure is introduced, under which, a universal expectation propagation algorithm (EPA) detector with hybrid parallel interference cancellation (PIC) is proposed (EPA in short). Link-level simulations show that the proposed EPA receiver can achieve superior block error rate (BLER) performance with implementation friendly complexity and fast convergence, and is always better than the traditional codeword level MMSE-PIC receiver for various kinds of NOMA schemes.Comment: This paper has been accepted by IEEE/CIC International Conference on Communications in China (ICCC 2018). 5 pages, 4 figure

    Turbo-like Iterative Multi-user Receiver Design for 5G Non-orthogonal Multiple Access

    Full text link
    Non-orthogonal multiple access (NoMA) as an efficient way of radio resource sharing has been identified as a promising technology in 5G to help improving system capacity, user connectivity, and service latency in 5G communications. This paper provides a brief overview of the progress of NoMA transceiver study in 3GPP, with special focus on the design of turbo-like iterative multi-user (MU) receivers. There are various types of MU receivers depending on the combinations of MU detectors and interference cancellation (IC) schemes. Link-level simulations show that expectation propagation algorithm (EPA) with hybrid parallel interference cancellation (PIC) is a promising MU receiver, which can achieve fast convergence and similar performance as message passing algorithm (MPA) with much lower complexity.Comment: Accepted by IEEE 88th Vehicular Technology Conference (IEEE VTC-2018 Fall), 5 pages, 6 figure

    WEATHERING COVID-19: Lessons from Wuhan and Milan for Urban Governance and Sustainability

    Get PDF
    The global spread of COVID-19 has exposed the world’s largest and densest urban centres to bearing the brunt of this pandemic. The invisible virus has forced thriving metropolises to empty their streets and shops to dead spaces absent of people and activity. It even triggers the doomsday question of, “Does COVID-19 mean the end of cities?” In this article, we compare how two great cities of the East and West – Wuhan and Milan – have responded to the deadly virus, with their internal and external strengths and constraints. We also take the reader deep into the two cities’ neighbourhoods for a realistic sense of how their local residents have dealt with COVID-19. We end by drawing critical lessons for urban governance and sustainability

    The effects of different versions of a gateway STEM course on student attitudes and beliefs

    Get PDF
    Background Substantial research has been conducted focusing on student outcomes in mathematics courses in order to better understand the ways in which these outcomes depend on the underlying instructional methodologies found in the courses. From 2009 to 2014, the Mathematical Association of America (MAA) studied Calculus I instruction in United States (US) colleges and universities in the Characteristics of Successful Programs of College Calculus (CSPCC). One aspect of this study attempted to understand the impact of these courses on student experience. Results In this paper, we describe results from an examination of the effect of course structure on students’ attitudes and beliefs across different versions of Calculus I at a large research university in the USA. To do this, we implemented a follow-up study of the national MAA study of calculus programs in part to identify potential relationships between various course structures and changes in attitudes and beliefs during the course. We compare our results both internally across these course structures and to the national data set. Conclusions We find that the statistically significant changes measured in confidence and enjoyment exhibit differences across the different calculus implementations and that these changes are statistically independent of the underlying student academic backgrounds as shown by standardized test scores and high school GPA. This suggests that these observed changes in attitudes and beliefs relate to the experience in our varied course structures and not to the academic characteristics of students as they enter the course. In addition to our findings, we show how this national study can be used locally to study effects of courses on student affective traits

    Optically levitated gyroscopes with a MHz rotating micro-rotor

    Full text link
    The optically levitated particles have been driven to rotate at an ultra-high speed of GHz, and the gyroscopic application of these levitated particles to measure angular motion have long been explored. However, this gyroscope has not been proven either theoretically or experimentally. Here, a rotor gyroscope based on optically levitated high-speed rotating particles is proposed. In vacuum, an ellipsoidal vaterite particle with 3.58 ÎŒ\mum average diameter is driven to rotate at MHz, and the optical axis orientation of the particle is measured by the particle rotational signal. The external inputted angular velocity makes the optical axis deviate from the initial position, which changes the frequency and amplitude of the rotational signal. The inputted angular velocity is hence detected by the rotational signal, and the angular rate bias instability of the prototype is measured to be 0.08o/s0.08^o/s. It is the smallest rotor gyroscope in the world, and the bias instability can be further improved up to 10−9o/h10^{-9o}/h theoretically by cooling the motion and increasing the angular moment of the levitated particle. Our work opens a new application paradigm of the levitated optomechanical systems and possibly bring the rotor gyroscope to the quantum realm
    • 

    corecore