350 research outputs found

    Hidden vortices in a Bose-Einstein condensate in a rotating double-well potential

    Full text link
    We study vortex formation in a Bose-Einstein condensate in a rotating double-well potential. Besides the ordinary quantized vortices and elusive ghost vortices, "hidden" vortices are found distributing along the central barrier. These hidden vortices are invisible like ghost vortex but carry angular momentum. Moreover, their core size is not given by the healing length, but is strongly influenced by the external potential. We find that the Feynman's rule can be well satisfied only after including the hidden vortices. There is no critical rotating frequency for the formation of hidden vortex while there is one for the formation of ordinary visible vortices. Hidden vortices can be revealed in the free expansion of the Bose-Einstein condensates. In addition, the hidden vortices in a Bose-Einstein condensate can appear in other external potentials, such as a rotating anisotropic toroidal trap.Comment: 6pages,5figure

    Magnetized Accretion Disks with Outflows for Changing-look AGNs

    Full text link
    Changing-look active galactic nuclei (CL-AGNs) challenges the standard accretion theory owing to its rapid variability. Recent numerical simulations have shown that, for the sub-Eddington accretion case, the disk is magnetic pressure-dominated, thermally stable, and geometrically thicker than the standard disk. In addition, outflows were found in the simulations. Observationally, high blueshifted velocities absorption lines indicate that outflows exist in AGNs. In this work, based on the simulation results, we investigate the magnetic pressure-dominated disk, and find that the accretion timescale is significantly shorter than that of the standard thin disk. However, such a timescale is still longer than that of the CL-AGNs. Moreover, if the role of outflows is taken into account, then the accretion timescale can be even shortened. By the detailed comparison of the theoretical accretion timescale with the observations, we propose that the magnetic pressure-dominated disk incorporating outflows can be responsible for the rapid variability of CL-AGNs.Comment: 11 pages, 3 figures, accepted for publication in Ap

    4,4′-{[4-(2,2′:6′,2′′-Terpyridin-4′-yl)phen­yl]imino}­dibenzaldehyde

    Get PDF
    The central pyridine ring of the 2,2′:6′,2′′-terpyridine fragment of the title compound, C35H24N4O2, forms dihedral angles of 8.3 (2), 10.6 (3) and 39.4 (3)°, respectively, with the two outer pyridine rings and the attached benzene ring. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into chains in [010]

    Taiji Data Challenge for Exploring Gravitational Wave Universe

    Full text link
    The direct observation of gravitational waves (GWs) opens a new window for exploring new physics from quanta to cosmos and provides a new tool for probing the evolution of universe. GWs detection in space covers a broad spectrum ranging over more than four orders of magnitude and enables us to study rich physical and astronomical phenomena. Taiji is a proposed space-based GW detection mission that will be launched in the 2030s. Taiji will be exposed to numerous overlapping and persistent GW signals buried in the foreground and background, posing various data analysis challenges. In order to empower potential scientific discoveries, the Mock LISA Data Challenge and the LISA Data Challenge (LDC) were developed. While LDC provides a baseline framework, the first LDC needs to be updated with more realistic simulations and adjusted detector responses for Taiji's constellation. In this paper, we review the scientific objectives and the roadmap for Taiji, as well as the technical difficulties in data analysis and the data generation strategy, and present the associated data challenges. In contrast to LDC, we utilize second-order Keplerian orbit and second-generation time delay interferometry techniques. Additionally, we employ a new model for the extreme-mass-ratio inspiral waveform and stochastic GW background spectrum, which enables us to test general relativity and measure the non-Gaussianity of curvature perturbations. Furthermore, we present a comprehensive showcase of parameter estimation using a toy dataset. This showcase not only demonstrates the scientific potential of the Taiji Data Challenge but also serves to validate the effectiveness of the pipeline. As the first data challenge for Taiji, we aim to build an open ground for data analysis related to Taiji sources and sciences. More details can be found on the official website at http://taiji-tdc.ictp-ap.org.Comment: 15 pages, 3 figure

    PT{\cal PT} Symmetry and PT{\cal PT}-Enhanced Quantum Sensing in a Spin-Boson System

    Full text link
    Open systems, governed by non-Hermitian Hamiltonians, evolve fundamentally differently from their Hermitian counterparts and facilitate many unusual applications. Although non-Hermitian but parity-time (PT{\cal PT}) symmetric dynamics has been realized in a variety of classical or semiclassical systems, its fully quantum-mechanical demonstration is still lacking. Here we ingeniously engineer a highly controllable anti-Hermitian spin-boson model in a circuit quantum-electrodynamical structure composed of a decaying artificial atom (pseudospin) interacting with a bosonic mode stored in a microwave resonator. Besides observing abrupt changes in the spin-boson entanglement evolution and bifurcation transition in quantum Rabi splitting, we demonstrate super-sensitive quantum sensing by mapping the observable of interest to a hitherto unobserved PT{\cal PT}-manifested entanglement evolution. These results pave the way for exploring non-Hermitian entanglement dynamics and PT{\cal PT}-enhanced quantum sensing empowered by nonclassical correlations.Comment: 25 pages, 19 figure

    Emergent Schr\"{o}dinger cat states during superradiant phase transitions

    Full text link
    Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the quantum level [1, 2], and play a central role in criticality-enhanced quantum sensing [3]. So far, SPTs have been observed in driven-dissipative systems [4-9], but the emergent light fields did not show any nonclassical characteristic due to the presence of strong dissipation. Here we report an experimental demonstration of the SPT featuring the emergence of a highly nonclassical photonic field, realized with a resonator coupled to a superconducting qubit, implementing the quantum Rabi model [10, 11]. We fully characterize the light-matter state by Wigner matrix tomography. The measured matrix elements exhibit quantum interference intrinsic of a photonic Schr\"{o}dinger cat state [12], and reveal light-matter entanglement. Besides their fundamental importance, these hitherto unobserved emergent quantum phenomena are useful for quantum metrology and fault-tolerant quantum computation.Comment: 19 pages, 14 figures, 2 table

    Experimental study of THGEM detector with mini-rim

    Full text link
    The gas gain and energy resolution of single and double THGEM detectors (5{\times}5cm2 effective area) with mini-rims (rim is less than 10{\mu}m) were studied. The maximum gain can reach 5{\times}103 and 2{\times}105 for single and double THGEM respectively, while the energy resolution of 5.9 keV X-ray varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thicknesses.All the experiments were investigated in mixture of noble gases(argon,neon) and small content of other gases(iso-butane,methane) at atmospheric pressure.Comment: 4pages,6figures, it has been submitted to Chinese Physics

    Landauer transport model for Hawking radiation from a Reissner-Nordstrom black hole

    Full text link
    The recent work of Nation et al in which Hawking radiation energy and entropy flow from a black hole can be regarded as a one-dimensional (1D) Landauer transport process is extended to the case of a Reissner-Nordstrom (RN) black hole. It is found that the flow of charge current can also be transported via a 1D quantum channel except the current of Hawking radiation. The maximum entropy current, which is shown to be particle statistics independence, is also obtained
    corecore