97,686 research outputs found

    Control and Filtering for Discrete Linear Repetitive Processes with H infty and ell 2--ell infty Performance

    No full text
    Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations which increase in amplitude in the pass to pass direction and cannot be controlled by standard control laws. Here we give new results on the design of physically based control laws for the sub-class of so-called discrete linear repetitive processes which arise in applications areas such as iterative learning control. The main contribution is to show how control law design can be undertaken within the framework of a general robust filtering problem with guaranteed levels of performance. In particular, we develop algorithms for the design of an H? and 2\ell_{2}–\ell_{\infty} dynamic output feedback controller and filter which guarantees that the resulting controlled (filtering error) process, respectively, is stable along the pass and has prescribed disturbance attenuation performance as measured by HH_{\infty} and 2\ell_{2}\ell_{\infty} norms

    Suppression of the superconducting energy gap in intrinsic Josephson junctions of Bi2Sr2CaCu2O8+δ\mathbf{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystals

    Full text link
    We have observed back-bending structures at high bias current in the current-voltage curves of intrinsic Josephson junctions. These structures may be caused by nonequilibrium quasiparticle injection and/or Joule heating. The energy gap suppression varies considerably with temperature. Different levels of the suppression are observed when the same level of current passes through top electrodes of different sizes. Another effect which is seen and discussed, is a super-current ``reentrance'' of a single intrinsic Josephson junction with high bias current.Comment: accepted by Supercond. Sci. and Tech., 200

    Fermi-liquid effects in the gapless state of marginally thin superconducting films

    Full text link
    We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.Comment: 6 pages, 4 figure

    LL-valley electron gg factor in bulk GaAs and AlAs

    Full text link
    We study the Land\'e gg-factor of conduction electrons in the LL-valley of bulk GaAs and AlAs by using a three-band kp\mathbf{k}\cdot\mathbf{p} model together with the tight-binding model. We find that the LL-valley gg-factor is highly anisotropic, and can be characterized by two components, gg_{\perp} and gg_{\|}. gg_{\perp} is close to the free electron Land\'e factor but gg_{\|} is strongly affected by the remote bands. The contribution from remote bands on gg_{\|} depends on how the remote bands are treated. However, when the magnetic field is in the Voigt configuration, which is widely used in the experiments, different models give almost identical gg-factor.Comment: 4 pages, 1 figure, To be published in J. App. Phys. 104, 200

    Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays

    Full text link
    The lifetime differences of bottom hadrons are known to be properly explained within the framework of heavy quark effective field theory(HQEFT) of QCD via the inverse expansion of the dressed heavy quark mass. In general, the spectrum around the endpoint region is not well behaved due to the invalidity of 1/mQ1/m_Q expansion near the endpoint. The curve fitting method is adopted to treat the endpoint behavior. It turns out that the endpoint effects are truly small and the explanation on the lifetime differences in the HQEFT of QCD is then well justified. The inclusion of the endpoint effects makes the prediction on the lifetime differences and the extraction on the CKM matrix element Vcb|V_{cb}| more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio

    Spin Polarisability of the Nucleon in the Heavy Baryon Effective Field Theory

    Full text link
    We have constructed a heavy baryon effective field theory with photon as an external field in accordance with the symmetry requirements similar to the heavy quark effective field theory. By treating the heavy baryon and anti-baryon equally on the same footing in the effective field theory, we have calculated the spin polarisabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon at third order and at fourth-order of the spin-dependent Compton scattering. At leading order (LO), our results agree with the corresponding results of the heavy baryon chiral perturbation theory, at the next-to-leading order(NLO) the results show a large correction to the ones in the heavy baryon chiral perturbation theory due to baryon-antibaryon coupling terms. The low energy theorem is satisfied both at LO and at NLO. The contributions arising from the heavy baryon-antibaryon vertex were found to be significant and the results of the polarisabilities obtained from our theory is much closer to the experimental data.Comment: 21pages, title changed, minimal correction
    corecore