742 research outputs found

    An online position error correction method for sensorless control of permanent magnet synchronous machine with parameter mismatch

    Get PDF
    To eliminate the influence of parameter mismatch for fundamental model based sensorless methods, an effective online position error correction method is proposed for permanent magnet synchronous machines in this paper. Based on the derived position error mechanism, i.e. the error varies proportionally to the dq -axis currents, the proposed method injects a sinusoidal current signal with a small amplitude and low frequency into the d - or q -axis current for a short period. During injection, the corresponding sinusoidal response for current injection can be acquired from the estimated speed of the sensorless position observer. It is found that the amplitude of the response in the estimated speed decreases as the parameter mismatch reduces, and eventually reaches a minimum if there is no parameter mismatch. Thus, by applying the least mean square (LMS) algorithm, the amplitude of the response in the estimated speed can be minimised as the parameters are adaptively adjusted to the actual values, and then the position error can be corrected. The proposed method is validated through experiments on a permanent magnet generator drive system

    Characterization of the monoclonal antibody against classical swine fever virus glycoprotein E-rns and its application to an indirect sandwich ELISA

    Get PDF
    Classical swine fever virus (CSFV) E-rns is an envelope glycoprotein possessing RNase activity. The E-rns-based enzyme-linked immunosorbent assay (ELISA) has been considered a discriminating diagnostic test for differentiating infected from vaccinated animals. The purpose of this study was to produce a specific monoclonal antibody (MAb) to E-rns for further developing an indirect sandwich ELISA. The MAb CW813 was shown to specifically recognize both the monomer and dimer forms of Pichia pastoris yeast-expressed E-rns (yE(rns)). The antigenic site recognized by MAb CW813 was mapped to the region of amino acid residues 101-160 of E-rns where it was neither a neutralizing epitope nor essential to RNase activity. Furthermore, MAb CW813 was utilized as a capture antibody to develop a yE(rns)-based indirect sandwich ELISA for detecting swine antibody to E-rns. The assay demonstrated a high sensitivity and specificity that may provide an alternative method for developing a diagnostic kit with easy manipulation and low cost

    Modeling water waves beyond perturbations

    Get PDF
    In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.Comment: 15 pages, 1 figure, 39 references. This document is a contributed chapter to an upcoming volume to be published by Springer in Lecture Notes in Physics Series. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Identification of alpha-enolase as an autoantigen in lung cancer: Its overexpression is associated with clinical outcomes

    Get PDF
    Purpose: Although existence of humoral immunity has been previously shown in malignant pleural effusions, only a limited number of immunogenic tumor-associated antigens (TAA) have been identified and associated with lung cancer. In this study, we intended to identify more TAAs in pleural effusion-derived tumor cells. Experimental Design: Using morphologically normal lung tissues as a control lysate in Western blotting analyses, 54 tumor samples were screened with autologous effusion antibodies. Biochemical purification and mass spectrometric identification of TAAs were done using established effusion tumor cell lines as antigen sources. We identified a p48 antigen as of-enolase (ENO1). Semiquantitative immunohistochemistry was used to evaluate expression status of ENO1 in the tissue samples of 80 patients with non-small cell lung cancer (NSCLC) and then correlated with clinical variables. Results: Using ENO1-specifc antiserum, up-regulation of ENO1 expression in effusion tumor cells from 11 of 17 patients was clearly observed compared with human normal lung primary epithelial and non-cancer-associated effusion cells. Immunohistochemical studies consistently showed high level of ENO1 expression in all the tumors we have examined thus far. Log-rank and Cox's analyses of ENO1 expression status revealed that its expression level in primary tumors was a key factor contributing to overall- and progression-free survivals of patients (P < 0.05). The same result was also obtained in the early stage of NSCLC patients, showing that tumors expressing relatively higher ENO1 level were tightly correlated with poorer survival outcomes. Conclusions: Our data strongly support a prognostic role of ENO1 in determining tumor malignancy of patients with NSCLC

    Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry

    Full text link
    Using an approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, we solve the Dirac equation with the screened Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number {\kappa}. Based on the spin and pseudospin symmetry, analytic bound state energy spectrum formulas and their corresponding upper- and lower-spinor components of two Dirac particles are obtained using a shortcut of the Nikiforov-Uvarov method. We find a wide range of permissible values for the spin symmetry constant C_{s} from the valence energy spectrum of particle and also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of antiparticle. Further, we show that the present potential interaction becomes less (more) attractive for a long (short) range screening parameter {\alpha}. To remove the degeneracies in energy levels we consider the spin and pseudospin solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa, the Yukawa plus centrifugal-like potentials, the limit when {\alpha} becomes zero (Coulomb potential field) and the non-relativistic limit of our solution are studied. The nonrelativistic solutions are compared with those obtained by other methods.Comment: 21 pages, 6 figure

    Design and characterization of alkoxy-wrapped push-pull porphyrins for dye-sensitized solar cells

    Get PDF
    Three alkoxy-wrapped push-pull porphyrins were designed and synthesized for dye-sensitized solar cell (DSSC) applications. Spectral, electrochemical, photovoltaic and electrochemical impedance spectroscopy properties of these porphyrin sensitizers were well investigated to provide evidence for the molecular design
    • …
    corecore