2 research outputs found

    Self-organized rock textures and multiring structure in the Duolun crater

    Get PDF
    The Duolun impact crater is a multiring basin located 200 km north of Beijing. From the center to the edge of the crater there are innermost rim, inner ring, outer rim, and outermost ring. Recently, we have found some self-organized textures or chaos phenomena in shock-metamorphic rocks from the Duolun impact crater, such as turbulence in matrices of impact glass, oscillatory zoning, or chemical chaos of spherulites in spherulitic splashed breccia, fractal wavy textures or self-similar wavy textures with varied scaling in impact glass, and crystallite beams shaped like Lorentz strange attractors. The rare phenomena indicate that the shock-metamorphic rocks from Duolun crater are formed far from equilibrium. If impact cratering generates momentarily under high-pressure and superhigh-temperature, occurrence of those chaos phenomena in shock-metamorphic rock is not surprising

    Hong Kong is an impact crater: Proof from the geomorphological and geological evidence

    Get PDF
    Hong Kong is a city in southern China. The urban districts of Hong Kong, Kowloon, and Victoria Harbour are situated within Hong Kong. Hong Kong is surrounded by mountains with a diameter of 11 km. Three million people live inside the basin. The round structure of the mountains in Hong Kong has been describd as a granite dome that is deeply eroded (batholith). The circularity of the mountains, the existence of a central hill, the inner slope of the mountains being greater than the outer slope, the presence of deep layer rock inside the basin, and the depth-to-diameter ratio were studied. All this evidence shows that the Hong Kong structure satisfies the geomorphological requirement of an impact crater. Some shock metamorphic phenomena of the rocks in Hong Kong such as planar features, microspherilitic silica glass (lechaterlierite), fused margins of rock fragments, concussion fractures, impact glass in which some schlierens are consistent with pyroxene spiculites, etc., were first discovered in Oct. 1990. In Hong Kong Island, an impact melt sheet was observed from the Victoria Peak to the southern shore. Quenching fractures of quartz in Kowloon fine-grained granite was also discovered. In our work, the K-Ar age (83.34 + 1.26 m.y.) of the impact melt rock, which is younger in comparison to the K-Ar age (117 m.y.) in Hong Kong and Kowloon granite, was measured, and the phenomena indicate that after the granite body formed, there was another geologic event. Maybe it is the Hong Kong cratering event
    corecore