14,099 research outputs found

    OM Theory and V-duality

    Get PDF
    We show that the (M5, M2, M2â€Č', MW) bound state solution of eleven dimensional supergravity recently constructed in hep-th/0009147 is related to the (M5, M2) bound state one by a finite Lorentz boost along a M5-brane direction perpendicular to the M2-brane. Given the (M5, M2) bound state as a defining system for OM theory and the above relation between this system and the (M5, M2, M2', MW) bound state, we test the recently proposed V-duality conjecture in OM theory. Insisting to have a decoupled OM theory, we find that the allowed Lorentz boost has to be infinitesimally small, therefore resulting in a family of OM theories related by Galilean boosts. We argue that such related OM theories are equivalent to each other. In other words, V-duality holds for OM theory as well. Upon compactification on either an electric or a `magnetic' circle (plus T-dualities as well), the V-duality for OM theory gives the known one for either noncommutative open string theories or noncommutative Yang-Mills theories. This further implies that V-duality holds in general for the little m-theory without gravity.Comment: 17 pages, typos corrected and references adde

    The equilibrium model for the effect of temperature on enzymes: Insights and implications

    Get PDF
    A new, experimentally-validated “Equilibrium Model” describes the effect of temperature on enzymes, and provides a new mechanism for the reversible loss of enzyme activity with temperature. It incorporates two new, fundamental parameters that allow a complete description of the effect of temperature on enzyme activity: ΔHeq and Teq. ΔHeq emerges as an intrinsic and quantitative measure of enzyme eurythermal adaptation, while Teq, the equilibrium temperature, has fundamental and technological significance for our understanding of the effect of temperature on enzymatic reactions. For biotechnological purposes, these parameters need to be considered when enzymes are applied or engineered for activity at high temperatures

    Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning.

    Get PDF
    Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.e., BDNF, CREB, CaMKII, and syntaxin 3. Concurrent exposure to exercise was complementary to the dietary treatment effects on spinal learning. The diet containing DHA/Cur resulted in higher levels of DHA and lower levels of omega-6 fatty acid arachidonic acid (AA) in the spinal cord than the diet deficient in DHA/Cur. The level of spinal learning was inversely related to the ratio of AA:DHA. These results emphasize the capacity of select dietary factors and exercise to foster spinal cord learning. Given the non-invasiveness and safety of the modulation of diet and exercise, these interventions should be considered in light of their potential to enhance relearning of sensorimotor tasks during rehabilitative training paradigms after a spinal cord injury

    Directed self-organization of graphene nanoribbons on SiC

    Full text link
    Realization of post-CMOS graphene electronics requires production of semiconducting graphene, which has been a labor-intensive process. We present tailoring of silicon carbide crystals via conventional photolithography and microelectronics processing to enable templated graphene growth on 4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes. This allows self-organized growth of graphene nanoribbons with dimensions defined by those of the facet. Preferential growth is confirmed by Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) measurements, and electrical characterization of prototypic graphene devices is presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2 SiC chip demonstrates scalability of this process and represents the highest density of graphene devices reported to date.Comment: 13 pages, 5 figure

    Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric

    Full text link
    In case of spacetimes with single horizon, there exist several well-established procedures for relating the surface gravity of the horizon to a thermodynamic temperature. Such procedures, however, cannot be extended in a straightforward manner when a spacetime has multiple horizons. In particular, it is not clear whether there exists a notion of global temperature characterizing the multi-horizon spacetimes. We examine the conditions under which a global temperature can exist for a spacetime with two horizons using the example of Schwarzschild-De Sitter (SDS) spacetime. We systematically extend different procedures (like the expectation value of stress tensor, response of particle detectors, periodicity in the Euclidean time etc.) for identifying a temperature in the case of spacetimes with single horizon to the SDS spacetime. This analysis is facilitated by using a global coordinate chart which covers the entire SDS manifold. We find that all the procedures lead to a consistent picture characterized by the following features: (a) In general, SDS spacetime behaves like a non-equilibrium system characterized by two temperatures. (b) It is not possible to associate a global temperature with SDS spacetime except when the ratio of the two surface gravities is rational (c) Even when the ratio of the two surface gravities is rational, the thermal nature depends on the coordinate chart used. There exists a global coordinate chart in which there is global equilibrium temperature while there exist other charts in which SDS behaves as though it has two different temperatures. The coordinate dependence of the thermal nature is reminiscent of the flat spacetime in Minkowski and Rindler coordinate charts. The implications are discussed.Comment: 12 page

    Exact isotropic cosmologies with local fractal number counts

    Get PDF
    We construct an exact relativistic cosmology in which an inhomogeneous but isotropic local region has fractal number counts and matches to a homogeneous background at a scale of the order of 10210^2 Mpc. We show that Einstein's equations and the matching conditions imply either a nonlinear Hubble law or a very low large-scale density.Comment: revised version, to appear Class. Q. Grav.; minor corrections following eqn 16, additional comments on relation to other work, some new reference
    • 

    corecore