6 research outputs found

    HCV infection-associated hepatocellular carcinoma in humanized mice.

    Get PDF
    BACKGROUND AND AIMS: Hepatitis C virus (HCV) infection is a major risk factor for chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). Our aim is to explore molecular changes that underlie HCV infection-associated HCC in a humanized mouse model, in order to identify markers of HCC progression. METHODS: Liver proteins from human hepatocyte-engrafted and HCV-infected MUP-uPA/SCID/Bg mice were compared with either uninfected controls or HCV-infected but HCC-negative mice by Western blotting. MicroRNA markers of HCC positive or uninfected mouse liver were analyzed by RT-PCR. RESULTS: We describe the depletion of tumor suppressor proteins and induction of oncoproteins and oncogenic microRNAs (oncomiRs) in HCV-infection associated HCC. Similar depletion of PTEN protein in both HCC-positive and HCV-infected but HCC-negative liver suggests that PTEN depletion is an early, precancerous marker of HCC. By contrast, induction of oncoprotein cMyc, oncomiRs (miR21, miR221 and miR141) and inflammatory response proteins correspond to HCC progression. CONCLUSIONS: While the loss of PTEN is important for the initiation of HCV infection-associated HCC, PTEN depletion by itself is insufficient for tumor progression. Liver tumor progression requires induction of oncoproteins and oncomiRs. Overall, human hepatocyte-engrafted (MUP-uPA/SCID/Bg) mice provide a suitable small animal model for studying the effects of oncogenic changes that promote HCV infection associated HCC

    Loss of nuclear PTEN in HCV-infected human hepatocytes

    Get PDF
    Background Hepatitis C virus (HCV) infection is a major risk factor for chronic hepatitis and hepatocellular carcinoma (HCC); however, the mechanism of HCV-mediated hepatocarcinogenesis is not well understood. Insufficiency of PTEN tumor suppressor is associated with more aggressive cancers, including HCC. We asked whether viral non-coding RNA could initiate oncogenesis in HCV infected human hepatocytes. The results presented herein suggest that loss of nuclear PTEN in HCV-infected human hepatocytes results from depletion of Transportin-2, which is a direct target of viral non-coding RNA, vmr11. Methods The intracellular distribution of PTEN in HCV-infected cells was monitored by immunostaining and Western blots of nuclear and cytoplasmic proteins. Effects of PTEN depletion were examined by comparing expression arrays of uninfected cells with either HCV-infected or vmr11-transfected cells. Target genes suggested by array analyses were validated by Western blot. The influence of nuclear PTEN deficiency on virus production was determined by quantitative analysis of HCV genomic RNA in culture media of infected hepatocytes. Results Import of PTEN to the nucleus relies on the interaction of Transportin-2 and PTEN proteins; we show that depletion of Transportin-2 by HCV infection or by the introduction of vmr11 in uninfected cells results in reduced nuclear PTEN. In turn, nuclear PTEN insufficiency correlates with increased virus production and the induction of ?-H2AX, a marker of DNA double-strand breaks and genomic instability. Conclusion An HCV-derived small non-coding RNA inhibits Transportin-2 and PTEN translocation to the nucleus, suggesting a direct viral role in hepatic oncogenesis

    Salutaxel, a Conjugate of Docetaxel and a Muramyl Dipeptide (MDP) Analogue, Acts as Multifunctional Prodrug That Inhibits Tumor Growth and Metastasis

    No full text
    Salutaxel (<b>3</b>) is a conjugate of docetaxel (<b>7</b>) and a muramyl dipeptide (MDP) analogue. Docetaxel (<b>7</b>) has been recognized as a highly active chemotherapeutic agent against various cancers. MDP and its analogues are powerful potentiators of the antitumor actions of various tumor-necrotizing agents. This article documents the discovery of compound <b>3</b> and presents pharmacological proof of its biological function in tumor-bearing mice. Drug candidate <b>3</b> was superior to compound <b>7</b> in its ability to prevent tumor growth and metastasis. Compound <b>3</b> suppressed myeloid-derived suppressor cell (MDSC) accumulation in the spleens of tumor-bearing mice and decreased various serum inflammatory cytokines levels. Furthermore, compound <b>3</b> antagonized the nucleotide-binding oligomerization domain-like receptor 1 (NOD1) signaling pathway both in vitro and in vivo
    corecore