2,182 research outputs found

    Experimental application of FRF-based model updating approach to estimate soil mass and stiffness mobilised under pile impact tests

    Get PDF
    The dynamic response of structures in contact with soil is receiving increasing interest and there is a growing need for more accurate models capable of simulating the behaviour of these systems. This is particularly important in the field of offshore wind turbines, where accurate estimates of system frequency are needed to avoid resonance, and in the structural health monitoring fields, where accurate reference damage models are used. Previous work has shown that there is significant uncertainty in how to specify mobilised soil stiffness for dynamic soil-pile interaction modelling. Moreover, the contribution of soil mass in dynamic motion is often ignored. This paper applies a finite-element iterative model updating approach previously developed by the authors to two experimental piles to ascertain the mobilised soil stiffness and mass profiles from impact test data. The method works by obtaining a frequency response function (FRF) from an impact test performed on a test pile, developing a numerical model of this system, applying initial estimates of soil mass and stiffness, and updating these properties to match the experimental FRF with that generated in the numerical model. A range of elements are investigated including multiple runs of the approach to test repeatability, the influence of different starting estimates for stiffness, the effect of variability in experimental test data, and the influence of the pile length over which masses are distributed. Moreover, potential sources of error are discussed. The method provides reasonably consistent estimates of the soil stiffness and mass acting in the lateral dynamic motion of a given pile tested in this paper. The approach may be useful in the continued improvement of Soil-Structure Interaction (SSI) modelling for dynamic applications

    Different Functional Gene Clusters in Yeast have Different Spatial Distributions of the Transcription Factor Binding Sites

    Get PDF
    Transcription factors control gene expression by binding to short specific DNA sequences, called transcription factor binding sites (TFBSs), in the promoter of a gene. Thus, studying the spatial distribution of TFBSs in the promoters may provide insights into the molecular mechanisms of gene regulation. I developed a method to construct the spatial distribution of TFBSs for any set of genes of interest. I found that different functional gene clusters have different spatial distributions of TFBSs, indicating that gene regulation mechanisms may be very different among different functional gene clusters. I also found that the binding sites for different transcription factors (TFs) may have different spatial distributions: a sharp peak, a plateau or no dominant single peak. The spatial distributions of binding sites for many TFs derived from my analyses are valuable prior information for TFBS prediction algorithm because different regions of a promoter can assign different possibilities for TFBS occurrence

    SUSY Ward identities for multi-gluon helicity amplitudes with massive quarks

    Full text link
    We use supersymmetric Ward identities to relate multi-gluon helicity amplitudes involving a pair of massive quarks to amplitudes with massive scalars. This allows to use the recent results for scalar amplitudes with an arbitrary number of gluons obtained by on-shell recursion relations to obtain scattering amplitudes involving top quarks.Comment: 22 pages, references adde

    Gene-flow between populations of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is highly variable between years

    Get PDF
    Both large and small scale migrations of Helicoverpa armigera Hübner in Australia were investigated using AMOVA analysis and genetic assignment tests. Five microsatellite loci were screened across 3142 individuals from 16 localities in eight major cotton and grain growing regions within Australia, over a 38-month period (November 1999 to January 2003). From November 1999 to March 2001 relatively low levels of migration were characterized between growing regions. Substantially higher than average gene-flow rates and limited differentiation between cropping regions characterized the period from April 2001 to March 2002. A reduced migration rate in the year from April 2002 to March 2003 resulted in significant genetic structuring between cropping regions. This differentiation was established within two or three generations. Genetic drift alone is unlikely to drive genetic differentiation over such a small number of generations, unless it is accompanied by extreme bottlenecks and/or selection. Helicoverpa armigera in Australia demonstrated isolation by distance, so immigration into cropping regions is more likely to come from nearby regions than from afar. This effect was most pronounced in years with limited migration. However, there is evidence of long distance dispersal events in periods of high migration (April 2001–March 2002). The implications of highly variable migration patterns for resistance management are considered.K.D. Scott, K.S. Wilkinson, N. Lawrence, C.L. Lange, L.J. Scott, M.A. Merritt, A.J. Lowe and G.C Graha

    Recursion relations, Helicity Amplitudes and Dimensional Regularization

    Full text link
    Using the method of on-shell recursion relations we compute tree level amplitudes including D-dimensional scalars and fermions. These tree level amplitudes are needed for calculations of one-loop amplitudes in QCD involving external quarks and gluons.Comment: 28 pages, 6 figures, clarifications adde

    A direct proof of the CSW rules

    Full text link
    Using recursion methods similar to those of Britto, Cachazo, Feng and Witten (BCFW) a direct proof of the CSW rules for computing tree-level gluon amplitudes is given.Comment: 11 pages, uses axodraw.st

    Sources of CP Violation in the Two-Higgs Doublet Model

    Get PDF
    Assuming CP violation arises solely through the Higgs potential, we develop the most general two-Higgs doublet model. There is no discrete symmetry that distinguishes the two Higgs bosons. It is assumed that an approximate global family symmetry sufficiently suppresses flavor-changing neutral scalar interactions. In addition to a CKM phase, neutral boson mixing, and superweak effects, there can be significant CP violation due to charged Higgs boson exchange. The value of ϵ/ϵ\epsilon'/\epsilon due to this last effect could be as large as in the standard model.Comment: 8 pages, RevTex, (appear in Phys. Rev. Lett. 73, (1994) 1762 ), CMU-HEP94-1

    From Yang-Mills Lagrangian to MHV Diagrams

    Full text link
    We prove the equivalence of a recently suggested MHV-formalism to the standard Yang-Mills theory. This is achieved by a formally non-local change of variables. In this note we present the explicit formulas while the detailed proofs are postponed to a future publication.Comment: Latex,11 pages, minor changes, reference added, version to appear in JHE
    corecore