159 research outputs found

    On the Real Analyticity of the Scattering Operator for the Hartree Equation

    Full text link
    In this paper, we study the real analyticity of the scattering operator for the Hartree equation itu=Δu+u(Vu2) i\partial_tu=-\Delta u+u(V*|u|^2). To this end, we exploit interior and exterior cut-off in time and space, and combining with the compactness argument to overcome difficulties which arise from absence of good properties for the nonlinear Klein-Gordon equation, such as the finite speed of propagation and ideal time decay estimate. Additionally, the method in this paper allows us to simplify the proof of analyticity of the scattering operator for the nonlinear Klein-Gordon equation with cubic nonlinearity in Kumlin.Comment: 16page

    General calculation method of power boundary of multiport power electronic transformer

    Get PDF
    In the multiport power electronic transformer (MPET), cascaded H-bridge (CHB) converters form the medium voltage AC port, while multiple low voltage DC ports are constructed by paralleling dual active bridge (DAB) converters into clusters. Uneven power distribution among these ports leads to power imbalances, risking over modulation in CHB converters with high power generation or load power. This study proposes a general calculation method (GCM) for determining the power boundary of MPETs, enabling the adjustment of reference power for each DC port to prevent over modulation. The GCM is designed to handle scenarios with multiple simultaneous power flow directions. The effectiveness of the GCM is verified by DC port power boundary simulation results of two independent DC bus structure multiport power electronic transformers. The proposed method provides a straightforward approach to calculating power boundary for MPETs with multiple power flow directions, ensuring efficient power management

    PPCR: Learning Pyramid Pixel Context Recalibration Module for Medical Image Classification

    Full text link
    Spatial attention mechanism has been widely incorporated into deep convolutional neural networks (CNNs) via long-range dependency capturing, significantly lifting the performance in computer vision, but it may perform poorly in medical imaging. Unfortunately, existing efforts are often unaware that long-range dependency capturing has limitations in highlighting subtle lesion regions, neglecting to exploit the potential of multi-scale pixel context information to improve the representational capability of CNNs. In this paper, we propose a practical yet lightweight architectural unit, Pyramid Pixel Context Recalibration (PPCR) module, which exploits multi-scale pixel context information to recalibrate pixel position in a pixel-independent manner adaptively. PPCR first designs a cross-channel pyramid pooling to aggregate multi-scale pixel context information, then eliminates the inconsistency among them by the well-designed pixel normalization, and finally estimates per pixel attention weight via a pixel context integration. PPCR can be flexibly plugged into modern CNNs with negligible overhead. Extensive experiments on five medical image datasets and CIFAR benchmarks empirically demonstrate the superiority and generalization of PPCR over state-of-the-art attention methods. The in-depth analyses explain the inherent behavior of PPCR in the decision-making process, improving the interpretability of CNNs.Comment: 10 page

    Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene

    Get PDF
    During the chemical vapor deposition (CVD) growth of graphene on Cu foils, evaporation of Cu and changes in the dimensions of Cu grains in directions both parallel and perpendicular to the foils are induced by thermal effects. Such changes in the Cu foil could subsequently change the shape and distribution of individual graphene domains grown on the foil surface, and thus influence the domain structure and electrical properties of the resulting graphene films. Here, a slower cooling rate is used after the CVD process, and the graphene films are found to have an improved electrical performance, which is considered to be associated with the Cu surface evaporation and grain structure changes in the Cu substrate.open

    Chance-constrained optimal dispatch of integrated electricity and natural gas systems considering medium and long-term electricity transactions

    Get PDF
    A novel stochastic optimal dispatch model considering medium and long-term electricity transaction for a wind power integrated energy system by using chance constrained programming is proposed. The electricity contract decomposition problem is introduced into the day-ahead optimal dispatch plan formulation progress. Considering the case that decomposition results may be not executable in the dispatch plan, a coordinated optimization strategy based on Lagrange multiplier is proposed to locate the infeasible factors and eliminate the non executable electric quantity. At the same time, the uncertainties and correlation of wind power are considered in the dispatch model, and the original stochastic dispatch problem is transformed into a mixed integer second-order cone programming problem based on second-order cone relaxation and deterministic transformation of chance constraints. Case study results demonstrate the validity of the proposed metho

    Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres

    Get PDF
    Periodic Ag nanoball (NB) arrays on ZnO hollow nanosphere (HNS) supporting structures were fabricated in a large area by a laser irradiation method. The optimized laser power and spherical supporting structure of ZnO with a certain size and separation were employed to aggregate a sputtering-deposited Ag nano-film into an ordered, large-area, and two dimensional Ag NB array. A significant band edge (BE) emission enhancement of ZnO HNSs was achieved on this Ag NB/ZnO HNS hybrid structure and the mechanism was revealed by further experimental and theoretical analyses. With successfully fabricating the direct-contact structure of a Ag NB on the top of each ZnO HNS, the highly localized quadrupole mode surface plasmon resonance (SPR), realized on the metal NBs in the ultraviolet region, can effectively improve the BE emission of ZnO through strong coupling with the excitons of ZnO. Compared with the dipole mode SPR, the quadrupole mode SPR is insensitive to the metal nanoparticle's size and has a resonance frequency in the BE region of the wide band gap materials, hence, it can be potentially applied in related optoelectronic devices
    corecore