1,444 research outputs found
Recommended from our members
Gefitinib and High-Dose Fractionated Radiotherapy for Carcinomatous Encephalitis from Non-Small Cell Lung Carcinoma
Carcinomatous encephalitis is a rapidly fatal form of metastasis caused by miliary spread of systemic cancer into the brain parenchyma. The diagnostic criteria and optimal treatment for this disease are not well defined. We report a patient with rapid neurologic deterioration from carcinomatous encephalitis from lung adenocarcinoma. She was treated with gefitinib and high-dose fractionated whole brain radiotherapy, and eventually improved neurologically and was discharged home on hospital day 48. Gefitinib and high-dose fractionated radiotherapy may have synergistic activity in patients with carcinomatous encephalitis from non-small cell lung cancer having favorable prognostic factors. More importantly, timely recognition of this disease and the use of large fraction radiation therapy are necessary to control rapid neurologic deterioration
Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFeAs family of materials
We report a combination of Fe K x-ray emission spectroscopy and
-intio calculations to investigate the correlation between structural and
magnetic degrees of freedom in CaFe(AsP). The
puzzling temperature behavior of the local moment found in rare earth-doped
CaFeAs [\textit{H. Gretarsson, et al., Phys. Rev. Lett. {\bf 110},
047003 (2013)}] is also observed in CaFe(AsP). We
explain this phenomenon based on first-principles calculations with scaled
magnetic interaction. One scaling parameter is sufficient to describe
quantitatively the magnetic moments in both CaFe(AsP) () and CaLaFeAs at all
temperatures. The anomalous growth of the local moments with increasing
temperature can be understood from the observed large thermal expansion of the
-axis lattice parameter combined with strong magnetoelastic coupling. These
effects originate from the strong tendency to form As-As dimers across the Ca
layer in the CaFeAs family of materials. Our results emphasize the
dual local-itinerant character of magnetism in Fe pnictides
Multifocal Stevens-Johnson syndrome after concurrent phenytoin and cranial and thoracic radiation treatment, a case report
A 46 year old male patient with metastatic prostate cancer developed Stevens-Johnson syndrome (SJS), initially in three well-demarcated areas on his scalp, chest and back, corresponding to ports of radiation therapy while on phenytoin. The rash spread from these locations and became more generalized and associated with pain and sloughing in the mucous lining of the mouth. There is a documented association between phenytoin administration with concurrent cranial radiation therapy and development of SJS. Erythema multiforme (EM) associated with phenytoin and cranial radiation therapy (EMPACT) is the term that describes this reaction. However, this term may not cover the full spectrum of the disease since it describes EM associated with phenytoin and only cranial radiation therapy. This case report presents evidence that SJS may be induced by radiation to other parts of the body in addition to the cranium while phenytoin is administered concomitantly. With increasing evidence that phenytoin and levetiracetam are equally efficacious for seizure treatment and prophylaxis, and since there is no link identified so far of an association between levetiracetam and SJS, we believe that levetiracetam is a better option for patients who need anticonvulsant medication(s) while undergoing radiation therapy, especially cranial irradiation
The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis
BACKGROUND: Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. METHODS: Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. RESULTS: Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg(-/- )mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg(-/- )less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. CONCLUSION: Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain
Making Maps Of The Cosmic Microwave Background: The MAXIMA Example
This work describes Cosmic Microwave Background (CMB) data analysis
algorithms and their implementations, developed to produce a pixelized map of
the sky and a corresponding pixel-pixel noise correlation matrix from time
ordered data for a CMB mapping experiment. We discuss in turn algorithms for
estimating noise properties from the time ordered data, techniques for
manipulating the time ordered data, and a number of variants of the maximum
likelihood map-making procedure. We pay particular attention to issues
pertinent to real CMB data, and present ways of incorporating them within the
framework of maximum likelihood map-making. Making a map of the sky is shown to
be not only an intermediate step rendering an image of the sky, but also an
important diagnostic stage, when tests for and/or removal of systematic effects
can efficiently be performed. The case under study is the MAXIMA data set.
However, the methods discussed are expected to be applicable to the analysis of
other current and forthcoming CMB experiments.Comment: Replaced to match the published version, only minor change
Structure of nanoparticles embedded in micellar polycrystals
We investigate by scattering techniques the structure of water-based soft
composite materials comprising a crystal made of Pluronic block-copolymer
micelles arranged in a face-centered cubic lattice and a small amount (at most
2% by volume) of silica nanoparticles, of size comparable to that of the
micelles. The copolymer is thermosensitive: it is hydrophilic and fully
dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into
micelles at room temperature, where the block-copolymer is amphiphilic. We use
contrast matching small-angle neuron scattering experiments to probe
independently the structure of the nanoparticles and that of the polymer. We
find that the nanoparticles do not perturb the crystalline order. In addition,
a structure peak is measured for the silica nanoparticles dispersed in the
polycrystalline samples. This implies that the samples are spatially
heterogeneous and comprise, without macroscopic phase separation, silica-poor
and silica-rich regions. We show that the nanoparticle concentration in the
silica-rich regions is about tenfold the average concentration. These regions
are grain boundaries between crystallites, where nanoparticles concentrate, as
shown by static light scattering and by light microscopy imaging of the
samples. We show that the temperature rate at which the sample is prepared
strongly influence the segregation of the nanoparticles in the
grain-boundaries.Comment: accepted for publication in Langmui
- …