4 research outputs found

    DC and Hall conductivity in holographic massive Einstein-Maxwell-Dilaton gravity

    Get PDF
    We investigate the holographic DC and Hall conductivity in massive Einstein-Maxwell-Dilaton (EMD) gravity. Two special EMD backgrounds are considered explicitly. One is dyonic Reissner-Nordström-AdS (RN-AdS) geometry and the other one is hyperscaling violation AdS (HV-AdS) geometry. We find that the linear-T resistivity and quadratic-T inverse Hall angle can be simultaneously achieved in HV-AdS models, providing a hint to construct holographic models confronting with the experimental data of strange metal in future

    Formation of Fermi surfaces and the appearance of liquid phases in holographic theories with hyperscaling violation

    Get PDF
    We consider a holographic fermionic system in which the fermions are interacting with a U(1) gauge field in the presence of a dilaton field in a gravity bulk of a charged black hole with hyperscaling violation. Using both analytical and numerical methods, we investigate the properties of the infrared and ultaviolet Green’s functions of the holographic fermionic system. Studying the spectral functions of the system, we find that as the hyperscaling violation exponent is varied, the fermionic system possesses Fermi, non-Fermi, marginal-Fermi and log-oscillating liquid phases. Various liquid phases of the fermionic system with hyperscaling violation are also generated with the variation of the fermionic mass. We also explore the properties of the flat band and the Fermi surface of the non-relativistic fermionic fixed point dual to the hyperscaling violation gravity

    Dynamically generated gap from holography in the charged black brane with hyperscaling violation

    Get PDF
    We holographically investigate the effects of a dipole coupling between a fermion field and a U(1) gauge field on the dual fermionic sector in the charged gravity bulk with hyperscaling violation. We analytically study the features of the ultraviolet and infrared Green’s functions of the dual fermionic system and we show that as the dipole coupling and the hyperscaling violation exponent are varied, the fluid possess Fermi, marginal Fermi, non-Fermi liquid phases and also an additional Mott insulating phase. We find that the increase of the hyperscaling violation exponent which effectively reduces the dimensionality of the system makes it harder for the Mott gap to be formed. We also show that the observed duality between zeros and poles in the presence of a dipole moment coupling still persists in theories with hyperscaling violation

    Holographic fermionic system with dipole coupling on Q-lattice

    Get PDF
    We construct a holographic model for a fermionic system on Q-lattice and compute the spectral function in the presence of a dipole coupling. Both key features of doped Mott insulators, the dynamical generation of a gap and spectral weight transfer, are observed when adjusting the value of the coupling parameter p . Of particular interest is that when the background is in a deep insulating phase, the Mott gap opens much easier with a smaller coupling parameter in comparison with a metallic background. The effects of lattice parameters on the width of the gap Δ /μ are studied and a turning point is observed near the critical regime of metal-insulator transitions of the background. Furthermore, the temperature dependence of the spectral function is studied. Finally, we also observe that the anisotropic Q-lattice generates anisotropic peaks with different magnitudes, indicating that insulating and metallic phases arise in different directions
    corecore