154 research outputs found

    Genetic Algorithm Approach for Constructing Railroad Operating Plans

    Get PDF

    Joint Rigid Motion Correction and Sparse-View CT via Self-Calibrating Neural Field

    Full text link
    Neural Radiance Field (NeRF) has widely received attention in Sparse-View Computed Tomography (SVCT) reconstruction tasks as a self-supervised deep learning framework. NeRF-based SVCT methods represent the desired CT image as a continuous function of spatial coordinates and train a Multi-Layer Perceptron (MLP) to learn the function by minimizing loss on the SV sinogram. Benefiting from the continuous representation provided by NeRF, the high-quality CT image can be reconstructed. However, existing NeRF-based SVCT methods strictly suppose there is completely no relative motion during the CT acquisition because they require \textit{accurate} projection poses to model the X-rays that scan the SV sinogram. Therefore, these methods suffer from severe performance drops for real SVCT imaging with motion. In this work, we propose a self-calibrating neural field to recover the artifacts-free image from the rigid motion-corrupted SV sinogram without using any external data. Specifically, we parametrize the inaccurate projection poses caused by rigid motion as trainable variables and then jointly optimize these pose variables and the MLP. We conduct numerical experiments on a public CT image dataset. The results indicate our model significantly outperforms two representative NeRF-based methods for SVCT reconstruction tasks with four different levels of rigid motion.Comment: 5 page

    IMJENSE: Scan-specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI

    Full text link
    Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at 5×\mathbf{\times} and 6×\mathbf{\times} accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI

    Unsupervised Polychromatic Neural Representation for CT Metal Artifact Reduction

    Full text link
    Emerging neural reconstruction techniques based on tomography (e.g., NeRF, NeAT, and NeRP) have started showing unique capabilities in medical imaging. In this work, we present a novel Polychromatic neural representation (Polyner) to tackle the challenging problem of CT imaging when metallic implants exist within the human body. The artifacts arise from the drastic variation of metal's attenuation coefficients at various energy levels of the X-ray spectrum, leading to a nonlinear metal effect in CT measurements. Reconstructing CT images from metal-affected measurements hence poses a complicated nonlinear inverse problem where empirical models adopted in previous metal artifact reduction (MAR) approaches lead to signal loss and strongly aliased reconstructions. Polyner instead models the MAR problem from a nonlinear inverse problem perspective. Specifically, we first derive a polychromatic forward model to accurately simulate the nonlinear CT acquisition process. Then, we incorporate our forward model into the implicit neural representation to accomplish reconstruction. Lastly, we adopt a regularizer to preserve the physical properties of the CT images across different energy levels while effectively constraining the solution space. Our Polyner is an unsupervised method and does not require any external training data. Experimenting with multiple datasets shows that our Polyner achieves comparable or better performance than supervised methods on in-domain datasets while demonstrating significant performance improvements on out-of-domain datasets. To the best of our knowledge, our Polyner is the first unsupervised MAR method that outperforms its supervised counterparts.Comment: 19 page

    Self-supervised arbitrary scale super-resolution framework for anisotropic MRI

    Full text link
    In this paper, we propose an efficient self-supervised arbitrary-scale super-resolution (SR) framework to reconstruct isotropic magnetic resonance (MR) images from anisotropic MRI inputs without involving external training data. The proposed framework builds a training dataset using in-the-wild anisotropic MR volumes with arbitrary image resolution. We then formulate the 3D volume SR task as a SR problem for 2D image slices. The anisotropic volume's high-resolution (HR) plane is used to build the HR-LR image pairs for model training. We further adapt the implicit neural representation (INR) network to implement the 2D arbitrary-scale image SR model. Finally, we leverage the well-trained proposed model to up-sample the 2D LR plane extracted from the anisotropic MR volumes to their HR views. The isotropic MR volumes thus can be reconstructed by stacking and averaging the generated HR slices. Our proposed framework has two major advantages: (1) It only involves the arbitrary-resolution anisotropic MR volumes, which greatly improves the model practicality in real MR imaging scenarios (e.g., clinical brain image acquisition); (2) The INR-based SR model enables arbitrary-scale image SR from the arbitrary-resolution input image, which significantly improves model training efficiency. We perform experiments on a simulated public adult brain dataset and a real collected 7T brain dataset. The results indicate that our current framework greatly outperforms two well-known self-supervised models for anisotropic MR image SR tasks.Comment: 10 pages, 5 figure

    Spontaneous pregnancy after tracking ovulation during menstruation: A case report of a woman with premature ovarian insufficiency and repeated failure of in vitro fertilization

    Get PDF
    The diagnosis of premature ovarian insufficiency (POI) is devastating in women of reproductive age because of the small chance of spontaneous pregnancy. Here, we report a very rare case with POI and repeated failure of in vitro fertilization (IVF) where the final result was natural fertilization following guidance to have sexual intercourse during menstruation as ovulation was monitored. Estradiol valerate was used to increase the thickness of the endometrium and stop the menstrual bleeding. There was a serum level of 208.44 IU/L of human chorionic gonadotropin (HCG) 14 days after the ovulation. Later, a series of transvaginal ultrasounds also indicated a normal-appearing intra-uterine pregnancy. A healthy baby girl was delivered at term by means of cesarean section. Our report suggested that although the chance of spontaneous pregnancy is relatively low in patients with POI with repeated IVF failures, as long as ovulation does occur, even if it happens during menstruation, natural pregnancy is still worth trying with a series of proper and personalized treatments

    Sex differences in non-communicable disease prevalence in China: a cross-sectional analysis of the China Health and Retirement Longitudinal Study in 2011

    Get PDF
    ObjectivesTo describe the sex differences in the prevalence of non-communicable diseases (NCDs) in adults aged 45 years or older in China.DesignCross-sectional study.SettingNationally representative sample of the Chinese population 2011.Participants8401 men and 8928 women over 45 years of age who participated in the first wave of the China Health and Retirement Longitudinal Study (CHARLS).Outcome measuresSelf-reported data on overall health and diagnosis of hypertension, dyslipidaemia, diabetes, heart disease, stroke, chronic lung disease, cancer or arthritis. Sex differences in NCDs were described using logistic regression to generate odds ratios (OR) with adjustment for sociodemographic factors and health-related behaviours. All analyses were stratified by age group for 45–64-year-old and ≥65-year-old participants.ResultsIn both age groups, men reported better overall health than women. The crude prevalence of heart disease, cancer and arthritis was higher while that of stroke and chronic lung disease was lower in women than in men. After adjustment, ORs (95% CI) for the 45–64 and ≥65 year age groups were 0.70 (0.58 to 0.84) and 0.66 (0.54 to 0.80), respectively, for arthritis for men compared with women. In contrast, ORs were 1.66 (1.09 to 2.52) and 2.12 (1.36 to 3.30) for stroke and 1.51 (1.21 to 1.89) and 1.43 (1.09 to 1.88) for chronic lung disease for men compared with women. ORs for heart disease (0.65 (0.52 to 0.80)) were lower in men than in women only in the 45–64 year age group.ConclusionsOdds of arthritis were lower while those of stroke and chronic lung disease were higher in men than in women in both age groups. However, odds of heart disease were lower in men than in women, but only in the group of individuals aged 45–64 years.</jats:sec

    Different MRI-based radiomics models for differentiating misdiagnosed or ambiguous pleomorphic adenoma and Warthin tumor of the parotid gland: a multicenter study

    Get PDF
    PurposeTo evaluate the effectiveness of MRI-based radiomics models in distinguishing between Warthin tumors (WT) and misdiagnosed or ambiguous pleomorphic adenoma (PA).MethodsData of patients with PA and WT from two centers were collected. MR images were used to extract radiomic features. The optimal radiomics model was found by running nine machine learning algorithms after feature reduction and selection. To create a clinical model, univariate logistic regression (LR) analysis and multivariate LR were used. The independent clinical predictors and radiomics were combined to create a nomogram. Two integrated models were constructed by the ensemble and stacking algorithms respectively based on the clinical model and the optimal radiomics model. The models’ performance was evaluated using the area under the curve (AUC).ResultsThere were 149 patients included in all. Gender, age, and smoking of patients were independent clinical predictors. With the greatest average AUC (0.896) and accuracy (0.839) in validation groups, the LR model was the optimal radiomics model. In the average validation group, the radiomics model based on LR did not have a higher AUC (0.795) than the clinical model (AUC = 0.909). The nomogram (AUC = 0.953) outperformed the radiomics model in terms of discrimination performance. The nomogram in the average validation group had a highest AUC than the stacking model (0.914) or ensemble model (0.798).ConclusionMisdiagnosed or ambiguous PA and WT can be non-invasively distinguished using MRI-based radiomics models. The nomogram exhibited excellent and stable diagnostic performance. In daily work, it is necessary to combine with clinical parameters for distinguishing between PA and WT
    • …
    corecore