3,472 research outputs found

    Efficient Methods for Multigram Compound Discovery

    Get PDF

    Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trehalose synthase (TreS) which converts maltose to trehalose is considered to be a potential biocatalyst for trehalose production. This enzymatic process has the advantage of simple reaction and employs an inexpensive substrate. Therefore, new TreS producing bacteria with suitable enzyme properties are expected to be isolated from extreme environment.</p> <p>Results</p> <p>Six TreS producing strains were isolated from a specimen obtained from soil of the Tibetan Plateau using degenerate PCR. A novel <it>treS </it>gene from <it>Enterobacter hormaechei </it>was amplified using thermal asymmetric interlaced PCR. The gene contained a 1626 bp open reading frame encoding 541 amino acids. The gene was expressed in <it>Escherichia coli</it>, and the recombinant TreS was purified and characterized. The purified TreS had a molecular mass of 65 kDa and an activity of 18.5 U/mg. The optimum temperature and pH for the converting reaction were 37°C and 6, respectively. Hg<sup>2+</sup>, Zn<sup>2+</sup>, Cu<sup>2+</sup>and SDS inhibited the enzyme activity at different levels whereas Mn<sup>2+ </sup>showed an enhancing effect by 10%.</p> <p>Conclusion</p> <p>In this study, several TreS producing strains were screened from a source of soil bacteria. The characterization of the recombinant TreS of <it>Enterobacter hormaechei </it>suggested its potential application. Consequently, a strategy for isolation of TreS producing strains and cloning of novel <it>treS </it>genes from natural sources was demonstrated.</p

    Dynamic Alignment of C2H4 Investigated by Using Two Linearly Polarized Femtosecond Laser Pulses

    Get PDF
    We have studied multielectron ionization and Coulomb explosion of C2H4 irradiated by 110 fs, 800 nm laser pulses at an intensity of ∼1015 W/cm2. Strong anisotropic angular distributions were observed for the atomic ions Cn+(n = 1–3). Based on the results of two crossed linearly polarized laser pulses, we conclude that such anisotropic angular distributions result from dynamic alignment, in which the rising edge of the laser pulses aligns the neutral C2H4 molecules along the laser polarization direction. The angular distribution of the exploding fragments, therefore, reflects the degree of the alignment of molecules before ionization. Using the same femtosecond laser with intensity below the ionization threshold, the alignment of C2H4 molecules was also observed

    Detection of HBV Genotypes of Tumor Tissues and Serum by A Fluorescence Polarization Assay in North-Western China's Hepatocellular Carcinoma Patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The understanding of the distribution of hepatitis B virus genotypes and the occult hepatitis B virus infection in hepatocellular carcinoma may shed light into the prevention and treatment of hepatocellular carcinoma. The purpose of the study is to investigate hepatitis B virus genotypes distribution, the high-risk genotypes and the occult infection in north-western China's hepatocellular carcinoma patients.</p> <p>Methods</p> <p>Hepatitis B virus genotypes A-D of hepatocellular carcinoma tumor tissues and serum samples in 268 north-western China hepatocellular carcinoma patients were detected by fluorescence polarization assay. The hepatitis B virus genotypes in serum and matched primary tumor tissue samples were compared. Hepatitis B surface antigen and α-fetoprotein in serum were detected. Occult hepatitis B virus infections were analyzed. The relationship between hepatitis B virus genotypes and clinicopathologic characteristics were analyzed statistically using SPSS v.10.0.</p> <p>Results</p> <p>Intrahepatic hepatitis B virus DNA was detected in 83.6% of 268 patients, whereas serum hepatitis B virus DNA was detected in 78.7%. The hepatitis B virus genotypes in serum were consistent with the results in matched tumor tissue. Intrahepatic hepatitis B virus genotype B and C were detected respectively in 11.6% and 54.5% of the patients. Mixed intrahepatic hepatitis B virus genotypes were detected in 13.4% of 268 patients. There was not mixed hepatitis B virus infection in Edmondonson grade I. The patients with mixed HBV genotypes exhibited statistically significant different Edmondson grade than the patients with single type HBV infection (p < 0.05). Hepatitis B surface antigens were positive in 77.2% of 268 patients. Hepatitis B virus genotype C was detected in 64.7% of occult infected patients. There was no significant differences of patients' ages and α-fetoprotein level in different groups of intrahepatic hepatitis B virus genotypes (p > 0.05).</p> <p>Conclusions</p> <p>Hepatitis B virus genotype C was associated closely with the development of hepatocellular carcinoma and the occult hepatitis B virus infection in patients in north-western China. There was a relatively high prevalence of mixed hepatitis B virus infection in Edmondonson grade III-IV.</p

    Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China

    Get PDF
    International audienceAbstractKey messageFire, harvest, and their spatial interactions are likely to affect boreal forest carbon stocks. Repeated disturbances associated with short fire return intervals and harvest rotations resulted in landscapes with a higher proportion of young stands that store less carbon than mature stands.ContextBoreal forests represent about one third of forest area and one third of forest carbon stocks on the Earth. Carbon stocks of boreal forests are sensitive to climate change, natural disturbances, and human activities.AimsThe objectives of this study were to evaluate the effects of fire, harvest, and their spatial interactions on boreal forest carbon stocks of northeastern China.MethodsWe used a coupled forest landscape model (LANDIS PRO) and a forest ecosystem model (LINKAGES) framework to simulate the landscape-level effects of fire, harvest, and their spatial interactions over 150 years.ResultsOur simulation suggested that aboveground carbon and soil organic carbon are significantly reduced by fire and harvest over the whole simulation period. The long-term effects of fire and harvest on carbon stocks were greater than the short-term effects. The combined effects of fire and harvest on carbon stocks are less than the sum of the separate effects of fire and harvest. The response of carbon stocks was impacted by the spatial variability of fire and harvest regimes.ConclusionThese results emphasize that the spatial interactions of fire and harvest play an important role in regulating boreal forest carbon stocks

    Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells

    Get PDF
    © 2018 The Royal Society of Chemistry This is an Open Access article, distributed under the terms of the Creative Commons Attribution Unported 3.0 license (CC BY 3.0), https://creativecommons.org/licenses/by/3.0/ which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly citedIn a dye-sensitized solar cell (DSSC) the amount of adsorbed dye on the photoanode surface is a key factor that must be maximized in order to obtain enhanced DSSC performance. In this study 3D ZnO nanostructures, named brush-like, are demonstrated as alternative photoanodes. In these structures, long ZnO nanorods are covered with a metal-organic precursor, known as a layered-hydroxide zinc salt (LHZS), which is subsequently converted to crystalline ZnO using two-step annealing. The LHZS is able to easily grow on any surface, such as the ZnO nanorod surface, without needing the assistance of a seed-layer. Brush-like structures synthesized using different citrate concentrations in the growth solutions and different annealing conditions are characterized and tested as DSSC photoanodes. The best-performing structure reported in this study was obtained using the highest citrate concentration (1.808 mM) and the lowest temperature annealing condition in an oxidative environment. Conversion efficiency as high as 1.95% was obtained when these brush-like structures were employed as DSSC photoanodes. These results are extremely promising for the implementation of these innovative structures in enhanced DSSCs, as well as in other applications that require the maximization of surface area exposed by ZnO or similar semiconductors, such as gas- or bio-sensing or photocatalysis.Peer reviewedFinal Published versio
    corecore