29 research outputs found

    Three-dimensional resolution-enhancement divided aperture correlation-differential confocal microscopy with nanometer axial focusing capability

    Get PDF
    Divided aperture confocal microscopy (DACM) provides an improved imaging depth, imaging contrast, and working distance at the expense of spatial resolution. Here, we present a new method-divided aperture correlation-differential confocal microscopy (DACDCM) to improve the DACM resolution and the focusing capability, without changing the DACM configuration. DACDCM divides the DACM image spot into two round regions symmetrical about the optical axis. Then the light intensity signals received simultaneously from two round regions by a charge-coupled device (CCD) are processed by correlation manipulation and differential subtraction to improve the DACM spatial resolution and axial focusing capability, respectively. Theoretical analysis and preliminary experiments indicate that, for the excitation wavelength of λ = 632.8 nm, numerical aperture NA = 0.8, and normalized offset vM = 3.2 of the two regions, the DACDCM resolution is improved by 32.5% and 43.1% in the x and z directions, simultaneously, compared with that of the DACM. The axial focusing resolution used for the sample surface profile imaging was also significantly improved to 2 nm

    An approach of point sources detection in X-ray astronomical image using support vector machine

    No full text
    Since most of energy sources in our Universe appear point-like structures,the study of point sources detection method on astronomical images has become significant.In this paper,a point sources detection approach on X-ray astronomical image was proposed.Firstly,a thresholding method was used to separate the background noises.Then,the peak detection method was taken to detect the positions of potential point sources.After that,we extracted spectrum features of point sources and backgrounds,and generated the classification model using the Support Vector Machine.Finally,the correct point sources were got after discarding of spurious detections with the classification model.Our approach was applied to the X-ray image of Galaxy NGC 4552.Compared with “wavdetect”,our approach has the same performance of accuracy with a detection error rate of 5%,but a higher efficiency

    Structural Integrity Assessment of an NEPE Propellant Grain Considering the Tension–Compression Asymmetry in Its Mechanical Property

    No full text
    In order to investigate the effect of tension–compression asymmetry of propellant mechanical properties on the structural integrity of a Nitrate Ester Plasticized Polyether (NEPE) propellant grain, the unified constitutive equations under tension and compression were established, a new method for grain structural integrity assessment was proposed and the structural integrity of the NEPE propellant grain under the combined axial and transverse overloads was evaluated. The results indicate that the mechanical state of the NEPE propellant grain is in the coexistence of tension and compression under the combined axial and transverse overloads, and the tension and compression regions in the propellant grain is independent of the propellant constitutive behavior. The tension–compression asymmetry of the propellant mechanical properties has a certain impact on its mechanical response. The maximum equivalent stress and strain considering the tension–compression asymmetry falls between that obtained through the tension and compression constitutive model, and is the same as damage coefficient. The safety factor of the NEPE propellant grain considering the tension–compression asymmetry of its mechanical properties is larger than that non-considering, and the traditional method of structural integrity assessment is conservative

    Preparing coal water slurry from BDO tar to achieve resource utilization: gasification process of BDO tar-coal water slurry

    No full text
    1, 4-Butanediol (BDO) is an important organic and fine chemical raw material, but the waste liquid (BDO tar) discoal charged from the BDO production plant is complex in composition, contains salt, and is complicated to handle. In this study, BDO tar was treated by the method of waste-coal water slurry, and the gasification process of blending BDO tar was studied. The results show that as the BDO tar content increases, the organic component in the BDO tar causes the temperature point corresponding to the peak of the maximum reaction rate to migrate to the high temperature zone during the initial temperature to 150 °C. In the temperature range of 200 °C~300 °C, the weight loss of BDO tar leads to a significant weight loss peak of TG curves. From 600 °C to the final reaction temperature range, the alkali metal Na enriches the surface of the coal char with more active “spot”, and due to the alkali metal Na limits the graphitization of coal char, the active sites increase, which increases the coal char gasification reaction activity

    Legitimacy or efficiency? : carbon emissions transfers under the pressure of environmental law enforcement

    No full text
    Reducing the carbon footprint of companies will be essential if we are to stabilise climate change. However, many researchers are concerned that companies will simply transfer their carbon emissions to another party resulting in carbon leakage rather than emissions reduction. Thus, there is a need to thoroughly investigate what drives companies to transfer carbon emissions as opposed to reducing them. In this study, we explore the motivations and internal mechanisms behind a company’s decision to opt for carbon transfers instead of carbon reduction. Drawing on legitimacy theory with a US sample, we provide evidence that strict environmental laws are an external motivation that place pressure on companies to transfer their carbon emissions. Using overseas capital and declared emissions reductions as a proxy for carbon emissions transfer, we find a significant positive correlation to environmental law enforcement. In addition, when facing the force of environmental law, the carbon strategies companies choose are influenced by a felt pressure to operate with both legitimacy and efficiency. Moreover, as pressure mounts in either of these spheres, companies become more and more likely to opt for emissions transfer not emissions reduction. The results indicate that strict environmental regulations forces companies to transfer carbon emissions, which is exacerbated if companies have a high legitimacy and efficiency pressure. As such, this study provides an in-depth discussion on corporate responses to carbon emissions with valuable implications for carbon emissions policymakers

    Trajectory Protection Schemes Based on a Gravity Mobility Model in IoT

    No full text
    With the proliferation of the Internet-of-Things (IoT), the users’ trajectory data containing privacy information in the IoT systems are easily exposed to the adversaries in continuous location-based services (LBSs) and trajectory publication. Existing trajectory protection schemes generate dummy trajectories without considering the user mobility pattern accurately. This would cause that the adversaries can easily exclude the dummy trajectories according to the obtained geographic feature information. In this paper, the continuous location entropy and the trajectory entropy are defined based on the gravity mobility model to measure the level of trajectory protection. Then, two trajectory protection schemes are proposed based on the defined entropy metrics to protect the trajectory data in continuous LBSs and trajectory publication, respectively. Experimental results demonstrate that the proposed schemes have a higher level than the enhanced dummy-location selection (enhance-DLS) scheme and the random scheme

    A Swarming Approach to Optimize the One-Hop Delay in Smart Driving Inter-Platoon Communications

    No full text
    Multi-platooning is an important management strategy for autonomous driving technology. The backbone vehicles in a multi-platoon adopt the IEEE 802.11 distributed coordination function (DCF) mechanism to transmit vehicles’ kinematics information through inter-platoon communications, and then forward the information to the member vehicles through intra-platoon communications. In this case, each vehicle in a multi-platoon can acquire the kinematics information of other vehicles. The parameters of DCF, the hidden terminal problem and the number of neighbors may incur a long and unbalanced one-hop delay of inter-platoon communications, which would further prolong end-to-end delay of inter-platoon communications. In this case, some vehicles within a multi-platoon cannot acquire the emergency changes of other vehicles’ kinematics within a limited time duration and take prompt action accordingly to keep a multi-platoon formation. Unlike other related works, this paper proposes a swarming approach to optimize the one-hop delay of inter-platoon communications in a multi-platoon scenario. Specifically, the minimum contention window size of each backbone vehicle is adjusted to enable the one-hop delay of each backbone vehicle to get close to the minimum average one-hop delay. The simulation results indicate that, the one-hop delay of the proposed approach is reduced by 12% as compared to the DCF mechanism with the IEEE standard contention window size. Moreover, the end-to-end delay, one-hop throughput, end-to-end throughput and transmission probability have been significantly improved

    Effect of Atmospheres on Transformation of Heavy Metals during Thermal Treatment of MSWI Fly Ash: By Thermodynamic Equilibrium Calculation

    No full text
    The vaporization behaviors of eight heavy metals (Pb, Zn, Cu, Cd, Cr, Co, Mn, and Ni) in municipal solid wastes incineration (MSWI) fly ash during thermal treatment under air atmosphere (21% O2/79% N2), an inert atmosphere (100% N2), and a reducing atmosphere (50% CO/50% N2) were evaluated based on a thermodynamic equilibrium calculation by FactSage 8.1. The results show that the reducing atmosphere promotes the melting of MSWI fly ash, resulting in a more liquid phase than in air or an inert atmosphere. Except for Cd, the formation of liquids can dissolve heavy metals and reduce their vaporization ratio. In the air and inert atmospheres, Pb, Zn, Cu, Co, Mn, and Ni vaporize mainly in the form of metallic chlorides, while Cd volatilizes in the form of metallic Cd (g) and CdO (g). In the reducing atmosphere, Co, Mn, and Ni still vaporize as chlorides. Zn and Cd mainly vaporize in the form of Zn (g) and Cd (g), respectively. In terms of Pb, in addition to its chlorides, the volatiles of Pb contain some Pb (g) and PbS (g). Cr has a low vaporization ratio, accounting for 2.4% of the air atmosphere. Cr, on the other hand, readily reacts with Ca to form water-soluble CrCaO4, potentially increasing Cr leaching. Except for Cd, the results of this study suggest that the reducing atmosphere is used for the thermal treatment of MSWI fly ash because it promotes the melting of fly ash and thus prevents heavy metal vaporization
    corecore