40 research outputs found

    A Non-Equilibrium Sediment Transport Model for Dam Break Flow over Moveable Bed Based on Non-Uniform Rectangular Mesh

    Get PDF
    The use of multiple-level non-uniform rectangular mesh in coupled flow and sediment transport modeling is preferred to achieve high accuracy in important region without increasing computational cost greatly. Here, a robust coupled hydrodynamic and non-equilibrium sediment transport model is developed on non-uniform rectangular mesh to simulate dam break flow over movable beds. The enhanced shallow water and sediment transport equations are adopted to consider the mass and momentum exchange between the flow phase and sediment phase. The flux at the interface is calculated by the positivity preserving central upwind scheme, which belongs to Godunov-type Riemann-problem-solver-free central schemes and is less expensive than other popular Riemann solvers while still capable of tracking wet/dry fronts accurately. The nonnegative water depth reconstruction method is used to achieve second-order accuracy in space. The model was first verified against two laboratory experiments of dam break flow over irregular fixed bed. Then the quantitative performance of the model was further investigated by comparing the computational results with measurement data of dam break flow over movable bed. The good agreements between the measurements and the numerical simulations are found for the flow depth, velocity and bed changes

    Diagnosis of mixed infection and a primary immunodeficiency disease using next-generation sequencing: a case report

    Get PDF
    Major Histocompatibility Complex Class II (MHC II) deficiency is a rare primary immunodeficiency disorder (PID) with autosomal recessive inheritance pattern. The outcome is almost fatal owing to delayed diagnosis and lacking of effective therapy. Therefore, prompt diagnosis, timely and effective treatment are critical. Here, we report a 117-day-old boy with diarrhea, cough, cyanosis and tachypnea who was failed to be cured by empiric antimicrobial therapy initially and progressed to severe pneumonia and respiratory failure. The patient was admitted to the pediatric intensive care unit (PICU) immediately and underwent a series of tests. Blood examination revealed elevated levels of inflammatory markers and cytomegalovirus DNA. Imaging findings showed signs of severe infection of lungs. Finally, the diagnosis was obtained mainly through next-generation sequencing (NGS). We found out what pathogenic microorganism he was infected via repeated conventional detection methods and metagenomic next-generation sequencing (mNGS) of sputum and bronchoalveolar lavage fluid (BALF). And his whole exome sequencing (WES) examination suggested that CIITA gene was heterozygous mutation, a kind of MHC II deficiency diseases. After aggressive respiratory support and repeated adjustment of antimicrobial regimens, the patient was weaned from ventilator on the 56th day of admission and transferred to the immunology ward on the 60th day. The patient was successful discharged after hospitalizing for 91 days, taking antimicrobials orally to prevent infections post-discharge and waiting for stem cell transplantation. This case highlights the potential importance of NGS in providing better diagnostic testing for unexplained infection and illness. Furthermore, pathogens would be identified more accurately if conventional detection techniques were combined with mNGS

    Development of a Cell-Centered Godunov-Type Finite Volume Model for Shallow Water Flow Based on Unstructured Mesh

    No full text
    Based on the Godunov-type cell-centered finite volume method, this paper presents a two-dimensional well-balanced shallow water model for simulating flows over arbitrary topography with wetting and drying. The central upwind scheme is used for the computation of mass and momentum fluxes on interface. The novel aspect of the present model is a robust and accurate nonnegative water depth reconstruction method which is implemented in the unstructured mesh to achieve second-order accuracy in space and to track the moving wet/dry fronts of the flow over irregular terrain. By defining the bed elevation and primary flow variables at the cell center in the nonstaggered grid system, all computational cells are either fully wet or dry to avoid the problem of being partially wetted. The developed model is capable of being well balanced and preserving the computed water depth to be nonnegative under a certain CFL restriction, which makes it robust and stable. The present model is validated against three benchmark tests and two laboratory dam-break cases. Finally, the good agreement between the numerical results by the established model and measured data of the Malpasset dam break event on a 1/400 scale physical model demonstrates the capability of the model for the real-life applications

    Development of Two-Dimensional Non-Hydrostatic Wave Model Based on Central-Upwind Scheme

    No full text
    In this study, a two-dimensional depth-integrated non-hydrostatic wave model is developed. The model solves the governing equations with hydrostatic and non-hydrostatic pressure separately. The velocities under hydrostatic pressure conditions are firstly obtained and then modified using the biconjugate gradient stabilized method. The hydrostatic front approximation (HFA) method is used to deal with the wave breaking issue, and after the wave breaks, the non-hydrostatic model is transformed into the hydrostatic shallow water model, where the non-hydrostatic pressure and vertical velocity are set to zero. Several analytical solutions and laboratory experiments are used to verify the accuracy and robustness of the developed model. In general, the numerical simulations are in good agreement with the theoretical or experimental results, which indicates that the model is able to simulate large-scale wave motions in practical engineering applications

    Modeling of Breaching Due to Overtopping Flow and Waves Based on Coupled Flow and Sediment Transport

    No full text
    Breaching of earthen or sandy dams/dunes by overtopping flow and waves is a complicated process with strong, unsteady flow, high sediment transport, and rapid bed changes in which the interactions between flow and morphology should not be ignored. This study presents a depth-averaged two-dimensional (2D) coupled flow and sediment transport model to investigate the flow and breaching processes with and without waves. Bed change and variable flow density are included in the flow continuity and momentum equations to consider the impacts of sediment transport. The model adopts the non-equilibrium approach for total-load sediment transport and specifies different repose angles to handle non-cohesive embankment slope avalanching. The equations are solved using an explicit finite volume method on a rectangular grid with the improved Godunov-type central upwind scheme and the nonnegative reconstruction of the water depth method to handle mixed-regime flows near the breach. The model has been tested against two sets of experimental data which show that it well simulates the flow characteristics, bed changes, and sediment transport. It is then applied to analyze flow and morphologic changes by overtopping flow with and without waves. The simulated bed change and breach cross-section shape show a significant difference if waves are considered. Erosion by flow without waves mainly occurs at the breach and is dominated by vertical erosion at the initial stage followed by the lateral erosion. With waves, the flow overtops the entire length of the dune to cause faster erosion along the entire length. Erosion mainly takes place at the upper layer at the initial stage and gradually accelerates as the height of the dune reduces and flow discharge increases, which indicates the simulated results with waves shall be further verified by physical experimental evidence

    Enhanced Performance and Stability of a Trimetallic CuZnY/SiBEA Catalyst in Ethanol to Butadiene Reaction by Introducing Copper to Optimize Acid/Base Ratio

    No full text
    Bioethanol to butadiene is currently the most promising non-oil-based butadiene production route. Here, copper is introduced into the conventional bimetallic zeolite catalyst to partially substitute for zinc; the isolated tetracoordinated Cu(II) species are formed, with weak and strong basic sites transformed into medium acid sites in trimetallic CuZnY/SiBEA catalyst. A partial substitution of zinc by copper increases the dispersion of metal, reduces the formation of ZnO clusters, decreases the pore blockage, and enhances the total pore volume of catalyst. The Cu1Zn2Y5/SiBEA catalyst with an appropriate 0.33 Cu/(Cu + Zn) mass ratio, a highest medium acid sites/(weak + strong) basic sites value of 6.17, and largest total pore volume of 0.251 cm3/g in all samples presents excellent catalytic performance in the ethanol to butadiene reaction: 99.01% ethanol conversion and 73.36% butadiene selectivity, higher than most reported ethanol to butadiene catalysts. The isolated tetracoordinated Cu(II) structure is stable, which is beneficial to the stability of trimetallic catalyst; when the reaction time is 60 h, the butadiene selectivity is 45.95%, 14% higher than corresponding bimetallic catalyst. The butadiene productivity of Cu1Zn2Y5/SiBEA catalyst reaches up to 1.68 gBD·gcat−1·h−1 at WHSV = 6 h−1 and time-on-stream = 8 h. Increasing reaction temperature could linearly increase the ethanol conversion, while the butadiene selectivity increases first and then decreases, the suitable temperature is 375 ℃ for the highest butadiene yield

    Shape reconstruction of parallelogram flaw

    No full text

    Improvement of Dust Particle Suction Efficiency by Controlling the Airflow of a Regenerative Air Sweeper

    No full text
    In a regenerative air sweeper, airflow and dust particles entering the system are filtered and recirculated within the system. The uncirculated portion of the exhaust air in the system spreads to the ambient air, and PM2.5 dust in the air can poison the environment and adversely affect human health. The development of an airflow control system to reduce road dust emissions and improve air quality was the main contribution of this study. A regenerative air sweeper airflow control system is designed to direct the air from the centrifugal fan back into the pickup head to fully absorb the dust particles and balance the positive and negative air pressures inside the pickup head. The modeling and analysis of the dust control system were performed using an experimental test rig system. A mathematical model of the fundamental parameters of the regenerative air sweeper and dust control system was established. Computational fluid dynamics (CFD) ANSYS was used for the analysis to determine the direction of airflow via the suction and inlet ducts. The discrete particle model (DPM) accurately predicted particle trajectories and measured the suction efficiency of particles of different shapes and types. By controlling the circulating harmful air flow in the system, the amount of PM2.5 released into the atmosphere was reduced by 90%. The suction efficiency of the 200 μm sized sand particles was higher than 95%. The results provide theoretical and methodological assistance for the development of improved road sweeper dust control systems
    corecore