54 research outputs found
Preclinical and clinical evidence for the treatment of non-alcoholic fatty liver disease with soybean: A systematic review and meta-analysis
Non-alcoholic fatty liver disease (NAFLD), a prevalent public health issue, involves the accumulation of triglycerides in hepatocytes, which is generally considered to be an early lesion of liver fibrosis and cirrhosis. Thus, the development of treatments for NAFLD is urgently needed. This study explored the preclinical and clinical evidence of soybeans to alleviate NAFLD. Studies indexed in three relevant databases—Web of Science, PubMed, and Embase—between January 2002 and August 2022 were retrieved. A total of 13 preclinical studies and five RCTs that included 212 animals and 260 patients were included in the present analysis. The preclinical analysis showed that liver function indices (AST, SMD = −1.41, p < 0.0001 and ALT, SMD = −1.47, p < 0.0001) were significantly improved in the soybean group compared to the model group, and fatty liver indicators (TG, SMD = −0.78, p < 0.0001; TC, SMD = −1.38, p < 0.0001) and that oxidative stress indices (MDA, SMD = −1.09, p < 0.0001; SOD, SMD = 1.74, p = 0.022) were improved in the soybean group. However, the five RCTs were not entirely consistent with the preclinical results; however, the results confirmed the protective effect on the liver. The results of the clinical RCTs showed that soybean significantly affected liver function, fatty liver, and oxidative stress indicators (ALT, SMD = −0.42, p = 0.006; TG, SMD = −0.31, p = 0.039; MDA, SMD = −0.76, p = 0.007). The current meta-analysis combined preclinical and clinical studies and verified that soybean could protect the liver in NAFLD by regulating lipid metabolism and oxidative stress factors via the Akt/AMPK/PPARα signaling pathway. Soybean might be a promising therapeutic agent for treating non-alcoholic fatty liver disease.Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/#myprospero), identifier (CRD42022335822)
ROS-mediated waterlogging memory, induced by priming, mitigates photosynthesis inhibition in tomato under waterlogging stress
With global climate change, the frequency and intensity of waterlogging events are increasing due to frequent and heavy precipitation. Little is known however about the response of plants to repeated waterlogging stress events. The aim is to clarify physiological regulation mechanisms of tomato plants under repeated waterlogging stress, and whether Trichoderma harzianum can alleviate waterlogging injury. We identified two genotypes of tomato, ‘MIX-002’ and ‘LA4440’, as waterlogging tolerant and sensitive genotypes, respectively, based on plant biomass accumulation. The two tomato genotypes were subjected to a waterlogging priming treatment for 2 days (excess water for 1 cm above substrate surface) followed by a recovery stage for 2 days, and then a second waterlogging stress for 5 days (excess water for 1 cm above substrate surface) followed by a second recovery stage for 3 days. Leaf physiological, plant growth parameters, and the expression of five key genes were investigated. We found that the two genotypes responded differently to waterlogging priming and stress in terms of photosynthesis, reactive oxygen species (ROS), and osmotic regulatory mechanisms. Waterlogging stress significantly increased H2O2 content of ‘MIX-002’, while that of ‘LA4440’ had no significant change. Under waterlogging stress, photosynthesis of the two genotypes treated with waterlogging priming returned to the control level. However, Trichoderma harzianum treatment during the second recovery stage did not show positive mitigative effects. The plants of ‘LA4440’ with priming showed lower peroxidase (POD) activity and proline content but higher H2O2 content than that without priming under waterlogging stress. Under waterlogging stress with priming as compared to without priming, SODCC2 was downregulated in two tomatoes, and AGR2 and X92888 were upregulated in ‘MIX-002’ but downregulated in ‘LA4440’. Overall, the two tomato genotypes exhibited distinct photosynthetic, ROS and osmotic regulatory mechanisms responding to the waterlogging stress. Waterlogging priming can induce stress memory by adjusting stomatal conductance, sustaining ROS homeostasis, regulating osmotic regulatory substances and key gene expressions mediated by H2O2, and thus alleviate the damage on tomato photosynthesis when waterlogging reoccurred
Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (S. habrochaites)
Abstract Background MicroRNA (miRNA) are key players in regulating expression of target genes at post-transcriptional level. A number of miRNAs are implicated in modulating tolerance to various abiotic stresses. Waterlogging is an abiotic stress that deters plant growth and productivity by hypoxia. Dozens of reports mention about the miRNAs expressed in response to waterlogging and hypoxia. Despite the fact that tomato is a model vegetable but waterlogging sensitive crop, the role of miRNAs in hypoxia tolerance is poorly understood in tomato. Results In this study, we investigated the differentially expressed miRNAs between hypoxia-treated and untreated wild tomato root by using high-throughput sequencing technology. A total of 33 known miRNAs were lowly expressed, whereas only 3 miRNAs showed higher expression in hypoxia-treated wild tomato root compared with untreated wild tomato root. Then two conserved and lowly expressed miRNAs, miR171 and miR390, were deactivated by Short Tandem Target Mimic (STTM) technology in Arabidopsis. As the results, the number and length of lateral roots were more in STTM171 and STTM390 transgenic lines compared with that of wild type plant, which partly phenocopy the increase root number and shortening the root length in hypoxia-treated wild tomato root. Conclusions The differentially expressed miRNAs between hypoxia-treated wild tomato and control root, which contribute to the auxin homeostasis, morphologic change, and stress response, might result in reduction in the biomass and length of the root in hypoxiated conditions
Precise analysis of thyroxine enantiomers in pharmaceutical formulation by mobility difference based on cyclodextrin
Identification and determination of chiral pharmaceutical residues is still a challenging analytical puzzle. In this work, a simple, rapid, and effective method for chiral D/L-tetraiodothyronine (T4) separation and quantitative was developed based on host–guest recognition using ion mobility spectrometry-mass spectrometry (IMS-MS). The D/L-T4 enantiomers were mobility separated by their diastereomeric complexes through mixing with cyclodextrin (CD) and metal ions. D/L-T4 was first separated by complexing with host molecule (α-, β-, γ-CD), observing weak peak-to-peak resolution (Rp-p) by the formed binary complex [CD + D/L-T4-H]+, and the Rp-p decreased with the CD size increasing. However, the separation effect of D/L-T4 was much improved with the addition of divalent metal ions (G2+) by the formed ternary complex [CD + D/L-T4 + G]2+. In comparison, α-CD related complexes can possess the best separation effect for D/L-T4 in most cases. Considering the high selectivity, non-toxic, and chemically stable of β-CD, [β-CD + D/L-T4 + Ca]2+ was selected for D/L-T4 analysis (RP-P = 0.764). Whereafter, chemical theoretical conformations for [β-CD + D/L-T4 + H]+ and [β-CD + D/L-T4 + Ca]2+ were optimized, discovering similar micro-interaction modes between [β-CD + D-T4 + H]+ and [β-CD + L-T4 + H]+; while with the addition of Ca2+, significantly different interaction modes were observed between [β-CD + D-T4 + Ca]2+ and [β-CD + L-T4 + Ca]2+. And theoretical collision cross section (CCS) trends for the complexes were consistent with that of the experimental results. Additionally, calibration curves were linear within 1.00 to 104 ng mL−1 with coefficient (R2 > 0.99), gaining the limit of detection (LODs) calculation of 0.11 ng mL−1, and the detection range between D-T4 and L-T4 of 45.6:1 to 1:59.8. Finally, the method was applied for D/L-T4 detection in Levothyroxine tablets, the detection content has good consistency on drug labeling. Because the proposed method exhibited good analytical performance in terms of speed, selectivity, sensitivity, and reproducibility of the measurements, that can be a promising strategy for effective D/L-T4 detection in pharmaceutical industries or other practical samples
The Effects of Catch Crops on Properties of Continuous Cropping Soil and Growth of Vegetables in Greenhouse
Continuous cropping has become a key factor limiting the sustainable development of greenhouse vegetables. It is a matter of great importance to maintain and improve the effective fertility of greenhouse soil. Catch crops planted as green manure is an effective method to improve soil quality. In order to determine the effects of catch crops on soil characteristics and the growth of afterculture vegetables, onion, corn, wheat, soybean and cabbage were planted as catch crops for two years during the summer fallow season, with no catch crop as CK. The results showed that the total porosity and organic matter content of the soil, with corn and wheat as catch crops, was significantly increased by 2.93%, 5.25% and 21.32%, 51.61%, respectively, while pH was decreased, compared with CK. The urease, sucrase, invertase, catalase and FDA enzyme activity of the soil with corn and wheat as catch crops was significantly increased by 30.14% and 30.21%, 14.81% and 25.31%, 15.43% and 15.21%, 29.37% and 28.69%, 46.32% and 44.23%. Meanwhile, the enzyme activity of the soil was increased with each catch crop planted. The amount of culturable bacteria and actinomycetes in the soil with corn and wheat as catch crops was increased by 33.42% and 38.12% at the period of 150dayII, while fungi was decreased by 59.95%. The yield of vegetables with corn and wheat as catch crops significantly increased by 5.59~13.33% and 4.35~11.18% compared with CK. Overall, catch crops could improve the soil quality as well as the growth of afterculture vegetables
Probing the spontaneous reduction mechanism of platinum ions confined in the nanospace by X-ray absorption fine structure spectroscopy
The reduction mechanism of Pt4+ ions confined in the channel of multi-walled carbon nanotubes was mainly investigated using X-ray absorption fine structure (XAFS) spectroscopy, with the aid of TEM, Raman, XRD and ICP-AES studies. The XAFS spectra revealed the spontaneous formation of Pt nanoparticles when H2PtCl6 was confined in multi-walled carbon nanotubes (MWCNTs). The Pt L-3-edge X-ray absorption near edge structure (XANES) coupled with the C K-edge NEXAFS results indicated that the reduction of Pt4+ from tetravalent to zerovalent was attributed to the electron transfer from MWCNTs. The Fourier transform R-space of the Pt L-3-edge XAFS data displayed that the nanoconfinement effect of MWCNTs promoted the formation of Pt nanoparticles. Moreover, the Pt-Pt bond length in confined Pt nanoparticles became shorter than that of Pt in the bulk state. Furthermore, by varying the inner diameter of MWCNTs from 15 nm to 10 nm and 5 nm, the Pt-Pt bond length of nanoconfined Pt nanoparticles decreased gradually. The results clearly revealed that MWCNTs acting as enriched electron donors can continuously reduce the confined Pt ions to Pt nanoparticles, thereby showing a great potential for the design of a new type of confined nanocatalysts
Poly (Octadecyl Methacrylate-Co-Trimethylolpropane Trimethacrylate) Monolithic Column for Hydrophobic in-Tube Solid-Phase Microextraction of Chlorophenoxy Acid Herbicides
Chlorophenoxy acid herbicides (CAHs), which are widely used on cereal crops, have become an important pollution source in grains. In this work, a highly hydrophobic poly (octadecyl methacrylate-co-trimethylolpropane trimethacrylate) [poly (OMA-co-TRIM)] monolithic column has been specially prepared for hydrophobic in-tube solid-phase microextraction (SPME) of CAHs in rice grains. Due to the hydrophobicity of CAHs in acid conditions, trace CAHs could be efficiently extracted by the prepared monolith with strong hydrophobic interaction. Several factors for online hydrophobic in-tube SPME, including the length of the monolithic column, ACN and trifluoroacetic acid percentage in the sampling solution, elution volume, and elution flow rate, were investigated with respect to the extraction efficiencies of CAHs. Under the optimized conditions, the limits of detection of the four CAHs fell in the range of 0.9−2.1 μg/kg. The calibration curves provided a wide linear range of 5−600 μg/kg and showed good linearity. The recoveries of this method ranged from 87.3% to 111.6%, with relative standard deviations less than 7.3%. Using this novel, highly hydrophobic poly (OMA-co-TRIM) monolith as sorbent, a simple and sensitive online in-tube SPME-HPLC method was proposed for analysis of CAHs residue in practical samples of rice grains
Comparative Analysis of the Factors Influencing Land Use Change for Emerging Industry and Traditional Industry: A Case Study of Shenzhen City, China
Analyzing the factors influencing emerging industry land use change is important for promoting industrial transformation and for upgrading and improving the level of intensive use of emerging industry land. In recent years, to solve the problem of land resource shortage and expansion space, Shenzhen has implemented a strategy of promoting urban development through technological innovation and has actively promoted the transformation of inefficient industrial land to emerging industry. This article introduces the development, land use types, and spatial distribution of Shenzhen’s emerging industries. Based on the logistic regression model, we analyze the differences between the factors influencing changes in land use for both emerging and traditional industry. The research results show that the distance from public roads, the distance from highways, the distance from railway freight stations, the proportion of secondary industry, and the proportion of tertiary industry are important explanatory variables for the two types of land use change. Traditional industrial land use is also affected by the land slope, the distance from ports, the population, and fixed asset investment. Emerging industry land use is also affected by the distance from the airport, the number of railway stations, the quality of the population, and innovation-driving forces. These results provide a reference for government to rationally plan emerging industry land and differentiated management of this, in order to fill the current research gap in the field of land use change, and to contribute to research revealing the mechanisms driving changes in emerging industrial land
Effects of Reduced Nitrogen with Bio-Organic Fertilizer on Soil Properties, Yield and Quality of Non-Heading Chinese Cabbage
Fertilizer is extremely essential to increasing the yield of vegetables. However, excessively using fertilizers has had a negative impact on the yield and quality of vegetables as well as soil environment in recent years. Non-heading Chinese cabbage ‘yellow rose’ was applied to determine the influence of organic manure and inorganic fertilizer on the character of rhizosphere soil, the growth and quality of plants. There were five treatments: conventional fertilization (NF), a total nitrogen reduction of 20% (NF20), a total nitrogen reduction of 30% (NF30), a total nitrogen reduction of 20% with 100 kg·667 m−2 bio-organic fertilizer (BNF20) and a total nitrogen reduction of 30% with 200 kg·667 m−2 bio-organic fertilizer (BNF30). The results show that the content of nitrate nitrogen, organic matter in rhizosphere soil treated by BNF20 and BNF30, was significantly enhanced compared with NF. The yield, Vc and soluble protein of plants treated by BNF20 and BNF30 increased by 30.11%, 17.26%, 5.66% and 15.90%, 16.02%, 5.37%, respectively, compared with NF. On the contrary, the nitrate content significantly decreased in plants of BNF20 and BNF30 by 47.87% and 40.98% compared with NF. The significantly positive correlation was observed between nitrate nitrogen content in rhizosphere soil and the yield (p < 0.05). In conclusion, reduced nitrogen with bio-organic fertilizer can improve the yield and quality of ‘yellow rose’ cabbage by improving the quality of rhizosphere soil
- …