7,191 research outputs found
Hashing based Answer Selection
Answer selection is an important subtask of question answering (QA), where
deep models usually achieve better performance. Most deep models adopt
question-answer interaction mechanisms, such as attention, to get vector
representations for answers. When these interaction based deep models are
deployed for online prediction, the representations of all answers need to be
recalculated for each question. This procedure is time-consuming for deep
models with complex encoders like BERT which usually have better accuracy than
simple encoders. One possible solution is to store the matrix representation
(encoder output) of each answer in memory to avoid recalculation. But this will
bring large memory cost. In this paper, we propose a novel method, called
hashing based answer selection (HAS), to tackle this problem. HAS adopts a
hashing strategy to learn a binary matrix representation for each answer, which
can dramatically reduce the memory cost for storing the matrix representations
of answers. Hence, HAS can adopt complex encoders like BERT in the model, but
the online prediction of HAS is still fast with a low memory cost. Experimental
results on three popular answer selection datasets show that HAS can outperform
existing models to achieve state-of-the-art performance
Distributed Interference-Aware Energy-Efficient Resource Allocation for Device-to-Device Communications Underlaying Cellular Networks
The introduction of device-to-device (D2D) into cellular networks poses many
new challenges in the resource allocation design due to the co-channel
interference caused by spectrum reuse and limited battery life of user
equipments (UEs). In this paper, we propose a distributed interference-aware
energy-efficient resource allocation algorithm to maximize each UE's energy
efficiency (EE) subject to its specific quality of service (QoS) and maximum
transmission power constraints. We model the resource allocation problem as a
noncooperative game, in which each player is self-interested and wants to
maximize its own EE. The formulated EE maximization problem is a non-convex
problem and is transformed into a convex optimization problem by exploiting the
properties of the nonlinear fractional programming. An iterative optimization
algorithm is proposed and verified through computer simulations.Comment: 6 pages, 3 figures, IEEE GLOBECOM 201
Energy Efficiency and Spectral Efficiency Tradeoff in Device-to-Device (D2D) Communications
In this letter, we investigate the tradeoff between energy efficiency (EE)
and spectral efficiency (SE) in device-to-device (D2D) communications
underlaying cellular networks with uplink channel reuse. The resource
allocation problem is modeled as a noncooperative game, in which each user
equipment (UE) is self-interested and wants to maximize its own EE. Given the
SE requirement and maximum transmission power constraints, a distributed
energy-efficient resource allocation algorithm is proposed by exploiting the
properties of the nonlinear fractional programming. The relationships between
the EE and SE tradeoff of the proposed algorithm and system parameters are
analyzed and verified through computer simulations.Comment: 8 pages, 6 figures, long version paper of IEEE Wireless
Communications Letters, accepted for publication. arXiv admin note: text
overlap with arXiv:1405.196
Solid waste mixtures combustion in a circulating fluidized Bed: emission properties of NOx, Dioxin, and Heavy Metals
To efficiently and environment friendly combust the domestic garbage, sludge, and swill waste fuels, five different fuels are prepared by mixing the waste fuels together with coal, and grass biomass at different mixing ratios, and finally those fuels were combusted in a circulating fluidized bed (CFB) reactor. The emission performances of NOx, dioxin, and heavy metal during the combustion tests are studied. The results showed that a stable furnace temperature can be reached at approximately 850 °C when combusting all studied mixed fuels, benefiting the thermal processes of sludge and domestic garbage and thus realizing the purpose of waste-to-fuel. In addition, the dioxin emissions are much lower than the emission standards, and NOx emissions could be reduced significantly by adjusting the ratio of waste fuels. However, the emissions of mercury, lead, and the combinations of chromium, tin, antimony, cupper and manganese components all exceeded the pollution control standard for hazardous wastes incineration, a further technology is required for heavy metal reductions to achieve the emission standards
- …