230 research outputs found
Areca Users in Combination with Tobacco and Alcohol Use Are Associated with Younger Age of Diagnosed Esophageal Cancer in Taiwanese Men
BACKGROUND: Whether the habitual use of substances (tobacco, alcohol, or areca nut (seed of the Areca palm)) can affect the age of esophageal squamous cell carcinoma (ESCC) presentation has rarely been examined. METHODS: The study subjects were those who were males and the first time to be diagnosed as ESCC (ICD-9 150) and who visited any of three medical centers in Taiwan between 2000 and 2009. A standardized questionnaire was used to collect substance uses and other variables. RESULTS: Mean age (±SD) at presentation of ESCC was 59.2 (±11.3) years in a total of 668 cases. After adjusting for other covariates, alcohol drinkers were 3.58 years younger to have ESCC than non-drinkers (p = 0.002). A similar result was found among areca chewers, who were 6.34 years younger to have ESCC than non-chewers (p<0.0001), but not among cigarette smokers (p = 0.10). When compared to the group using 0-1 substances, subjects using both cigarettes and alcohol were nearly 3 years younger to contract ESCC. Furthermore, those who use areca plus another substance were 7-8 years younger. Subjects using all three substances had the greatest age difference, 9.20 years younger (p<0.0001), compared to the comparison group. CONCLUSION: Our findings suggest that habitually consuming tobacco, alcohol, and areca nut can influence the age-onset of ESCC. Since the development of ESCC is insidious and life-threatening, our observation is worthy to be reconfirmed in the large-scale and long-term follow-up prospective cohort studies to recommend the screening strategy of this disease
Impaired dendritic cell maturation and IL-10 production following H. pylori stimulation in gastric cancer patients
The current study was to investigate the interaction between Helicobacter pylori and human dendritic cells (DCs). Whether impaired DC function can influence the outcome of H. pylori infections. Human monocyte-derived DCs (MDDCs) from five gastric cancer patients and nine healthy controls were stimulated with H. pylori. Maturation markers of MDDC were examined by flow cytometry. IL-10 and TNF-α released by MDDCs and IL-17 produced by T cells were measured by ELISA. Regulatory signaling pathways of IL-10 were examined by ELISA, western blotting, and chromatin immunoprecipitation assay. The results showed that as compared with healthy individuals, the maturation marker CD40 in MDDCs, IL-17A expression from T cells, and IL-10 expression from MDDCs were significantly lower in gastric cancer patients. Blocking DC-SIGN, TLR2, and TLR4 could reverse H. pylori-associated IL-10 production. Activation of the p38 MAPK and NF-kB signaling pathways concomitant with decreased tri-methylated H3K9 and increased acetylated H3 accounted for the effect of H. pylori on IL-10 expression. Furthermore, upregulated IL-10 expression was significantly suppressed in H. pylori-pulsed MDDCs by histone acetyltransferase and methyltransferase inhibitors. Taken together, impaired DC function contributes to the less effective innate and adaptive immune responses against H. pylori seen in gastric cancer patients. H. pylori can regulate IL-10 production through Toll-like and DC-SIGN receptors, activates p-p38 MAPK signaling and the transcription factors NF-kB, and modulates histone modification
In Vitro
Infection with Helicobacter pylori is strongly associated with gastric cancer and gastric adenocarcinoma. WHO classified H. pylori as a group 1 carcinogen in 1994. Impatiens balsamina L. has been used as indigenous medicine in Asia for the treatment of rheumatism, fractures and fingernail inflammation. In this study, we isolated anti-H. pylori compounds from this plant and investigated their anti- and bactericidal activity. Compounds of 2-methoxy-1,4-naphthoquinone (MeONQ) and stigmasta-7,22-diene-3β-ol (spinasterol) were isolated from the pods and roots/stems/leaves of I. balsamina L., respectively. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for MeONQ were in the ranges of 0.156–0.625 and 0.313–0.625 μg mL−1, respectively, and in the ranges of 20–80 μg mL−1 both of MICs and MBCs for spinasterol against antibiotic (clarithromycin, metronidazole and levofloxacin) resistant H. pylori. Notably, the activity of MeONQ was equivalent to that of amoxicillin (AMX). The bactericidal H. pylori action of MeONQ was dose-dependent. Furthermore, the activity of MeONQ was not influenced by the environmental pH values (4–8) and demonstrated good thermal (121°C for 15 min) stability. MeONQ abounds in the I. balsamina L. pod at the level of 4.39% (w/w db). In conclusion, MeONQ exhibits strong potential to be developed as a candidate agent for the eradication of H. pylori infection
Performance of Routine Helicobacter pylori Invasive Tests in Patients with Dyspepsia
Background. This study was designed to compare the accuracy of three different invasive methods for the detection of Helicobacter pylori (H. pylori) infection in patients with dyspepsia. These tests included culture, histology, and the rapid urease test (CLO test). Methods. H. pylori infection was diagnosed prospectively in 246 untreated dyspeptic patients who underwent upper gastrointestinal endoscopy. The gold standard for H. pylori infection was based on a positive culture or both a positive histological examination and a CLO test. Results. H. pylori was diagnosed in 33.3% of the patients. The sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were as follows: histology from the antrum (95.12; 95.12; 90.7; 97.5; 95.12%); histology from the antrum and corpus (95.12; 95.12; 90.7; 97.5; 95.12%); histology from the corpus (76.83; 96.95; 92.65; 89.33; 90.24%); culture (91.46; 100; 100; 95.91; 97.15%); a CLO test from the antrum and corpus (85.59; 100; 100; 93.71; 95.52%); a CLO test from the antrum (64.63; 100; 100; 84.97; 88.21%); a CLO test from the corpus (69.51; 100; 100; 96.77; 89.83%), respectively. Conclusions. Antral biopsy histology and culture are the best methods for the diagnosis of H. pylori infection in our cohort of patients with dyspepsia
Shortâ term and longâ term impacts of Helicobacter pylori eradication with reverse hybrid therapy on the gut microbiota
Background and AimsAntiâ Helicobacter pylori therapy may lead to the growth of pathogenic or antibioticâ resistant bacteria in the gut. The study aimed to investigate the shortâ term and longâ term impacts of H. pylori eradication with reverse hybrid therapy on the components and macrolide resistance of the gut microbiota.MethodsHelicobacter pyloriâ related gastritis patients were administered a 14â day reverse hybrid therapy. Fecal samples were collected before treatment and at the end of week 2, week 8, and week 48. The V3â V4 region of the bacterial 16S rRNA gene in fecal specimens was amplified by polymerase chain reaction and sequenced on Illumina MiSeq platform. Additionally, amplification of erm(B) gene (encoding erythromycin resistance methylase) was performed.ResultsReverse hybrid therapy resulted in decreased relative abundances of Firmicutes (from 62.0% to 30.7%; P < 0.001) and Actinobacteria (from 3.4% to 0.6%; 0.032) at the end of therapy. In contrast, the relative abundance of Proteobacteria increased from 10.2% to 49.1% (0.002). These microbiota alterations did not persist but returned to the initial levels at week 8 and week 48. The amount of erm(B) gene in fecal specimens was comparable with the pretreatment level at week 2 but increased at week 8 (0.025) and then returned to the pretreatment level by week 48.ConclusionsHelicobacter pylori eradication with reverse hybrid therapy can lead to shortâ term gut dysbiosis. The amount of erm(B) gene in the stool increased transiently after treatment and returned to the pretreatment level at 1â year postâ treatment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152555/1/jgh14736_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152555/2/jgh14736.pd
Identification of Biomarkers for Esophageal Squamous Cell Carcinoma Using Feature Selection and Decision Tree Methods
Esophageal squamous cell cancer (ESCC) is one of the most common fatal human cancers. The identification of biomarkers for early detection could be a promising strategy to decrease mortality. Previous studies utilized microarray techniques to identify more than one hundred genes; however, it is desirable to identify a small set of biomarkers for clinical use. This study proposes a sequential forward feature selection algorithm to design decision tree models for discriminating ESCC from normal tissues. Two potential biomarkers of RUVBL1 and CNIH were identified and validated based on two public available microarray datasets. To test the discrimination ability of the two biomarkers, 17 pairs of expression profiles of ESCC and normal tissues from Taiwanese male patients were measured by using microarray techniques. The classification accuracies of the two biomarkers in all three datasets were higher than 90%. Interpretable decision tree models were constructed to analyze expression patterns of the two biomarkers. RUVBL1 was consistently overexpressed in all three datasets, although we found inconsistent CNIH expression possibly affected by the diverse major risk factors for ESCC across different areas
SUMOs Mediate the Nuclear Transfer of p38 and p-p38 during Infection
The p38 mitogen activated protein kinase (MAPK) signaling pathway has been suggested to play a significant role in the gastric mucosal inflammatory response to chronic Helicobacter pylori (H. pylori) infection. Nuclear translocation is thought to be important for p38 function, but no nuclear translocation signals have been found in the protein and no nuclear carrier proteins have been identified for p38. We have investigated the role of small ubiquitin-related modifier (SUMO) in the nuclear transfer of p38 in response to H. pylori infection. Exposure of human AGS cells to H. pylori induced the activation of p38 and the expression of SUMOs, especially SUMO-2. SUMO knockdown counteracted the effect of H. pylori infection by decreasing the resulting p38 mediated cellular apoptosis through a reduction in the nuclear fraction of phosphorylated p38. We identified a non-covalent interaction between SUMOs and p38 via SUMO interaction motifs (SIMs), and showed that SUMO-dependent nuclear transfer of p38 was decreased upon mutation of its SIMs. This study has identified a new pathway of p38 nuclear translocation, in response to H. pylori infection. We conclude that in the presence of H. pylori SUMO-2 has a major role in regulating nuclear levels of p38, through non-covalent SUMO-p38 interactions, independent of the p38 phosphorylation state
Does Long-Term Use of Silver Nanoparticles Have Persistent Inhibitory Effect on H. pylori Based on Mongolian Gerbil’s Model?
It is urgent to find alternative agents due to increasing failure rate of Helicobacter pylori (H. pylori) eradication. The study surveyed the long-term effect of silver nanoparticles (AgNP) on H. pylori based on Mongolian gerbil's model
Jun Dimerization Protein 2 Controls Senescence and Differentiation via Regulating Histone Modification
Transcription factor, Jun dimerization protein 2 (JDP2), binds directly to histones and DNAs and then inhibits the p300-mediated acetylation both of core histones and of reconstituted nucleosomes that contain JDP2 recognition DNA sequences. JDP2 plays a key role as a repressor of adipocyte differentiation by regulation of the expression of the gene
C/EBPδ
via inhibition of histone acetylation. Moreover, JDP2-deficient mouse embryonic fibroblasts (JDP2−/− MEFs)
are resistant to replicative senescence. JDP2 inhibits the recruitment of polycomb repressive complexes (PRC1 and PRC2) to the promoter
of the gene encoding p16Ink4a, resulting from the inhibition of methylation of lysine 27 of histone H3 (H3K27). Therefore, it seems that chromatin-remodeling factors, including the PRC complex controlled by JDP2, may be important players in the senescence program. The novel mechanisms that underline the action of JDP2 in inducing cellular senescence and suppressing adipocyte differentiation are reviewed
Equivalent efficacies of reverse hybrid and concomitant therapies in first- line treatment of Helicobacter pylori infection
Background and AimConcomitant therapy is a recommended first- line treatment for Helicobacter pylori infection in most national or international consensuses. Reverse hybrid therapy is a modified 14- day concomitant therapy without clarithromycin and metronidazole in the final 7 days. This study aims to test whether 14- day reverse hybrid therapy is non- inferior to 14- day concomitant therapy in the first- line treatment of H. pylori infection.MethodsHelicobacter pylori- infected adult patients were randomly assigned to receive either reverse hybrid therapy (dexlansoprazole 60 mg o.d. plus amoxicillin 1 g b.d. for 14 days, and clarithromycin 500 mg plus metronidazole 500 mg b.d. for initial 7 days) or concomitant therapy (dexlansoprazole 60 mg once o.d. plus amoxicillin 1 g, clarithromycin 500 mg, and metronidazole 500 mg b.d. for 14 days). H. pylori status was assessed 6 weeks after the end of treatment.ResultsHelicobacter pylori- infected participants (n = 248) were randomized to receive either 14- day reverse hybrid therapy (n = 124) or 14- day concomitant therapy (n = 124). Intention- to- treat analysis demonstrated that the two therapies had comparable eradication rate (95.2% vs 93.5%; 95% confidence interval, - 4.0% to 7.4%; P = 0.582). However, reverse hybrid therapy had a much lower frequency of adverse events than concomitant therapy (20.2% vs 38.7%, P = 0.001). The two therapies exhibited comparable drug adherence (93.5% vs 87.9%, P = 0.125).ConclusionsFourteen- day reverse hybrid therapy and 14- day concomitant therapy are equivalent in efficacy for the first- line treatment of H. pylori infection. However, reverse hybrid therapy has fewer adverse events compared with concomitant therapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163472/2/jgh15034_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163472/1/jgh15034.pd
- …