896 research outputs found

    1-(Benzyl­ideneamino)pyridinum iodide

    Get PDF
    In the title compound, C12H11N2 +·I−, the aromatic rings are oriented at a dihedral angle of 73.40 (3)°. In the crystal structure, π–π contacts between the pyridine rings and the benzene and pyridine rings [centroid–centroid distances = 3.548 (3) and 4.211 (3) Å] may stabilize the structure

    Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications

    Get PDF
    Nanoparticles possess unique features due to their small size and can be composed of different surface chemistries. Carbon quantum dots possess several unique physico-chemical and antibacterial activities. This review provides an overview of different methods to prepare carbon quantum dots from different carbon sources in order to provide guidelines for choosing methods and carbon sources that yield carbon quantum dots with optimal antibacterial efficacy. Antibacterial activities of carbon quantum dots predominantly involve cell wall damage and disruption of the matrix of infectious biofilms through reactive oxygen species (ROS) generation to cause dispersal of infecting pathogens that enhance their susceptibility to antibiotics. Quaternized carbon quantum dots from organic carbon sources have been found to be equally efficacious for controlling wound infection and pneumonia in rodents as antibiotics. Carbon quantum dots derived through heating of natural carbon sources can inherit properties that resemble those of the carbon sources they are derived from. This makes antibiotics, medicinal herbs and plants or probiotic bacteria ideal sources for the synthesis of antibacterial carbon quantum dots. Importantly, carbon quantum dots have been suggested to yield a lower chance of inducing bacterial resistance than antibiotics, making carbon quantum dots attractive for large scale clinical use

    N-Acryloylphenyl­alanine

    Get PDF
    The title compound, C12H13NO3, was prepared by the nucleophilic substitution reaction of acryloyl chloride with glycylglycine. In the crystal structure, inter­molecular N—H⋯O, O–H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network

    Characterization of isoprene-derived secondary organic aerosols at a rural site in North China Plain with implications for anthropogenic pollution effects

    Get PDF
    Isoprene is the most abundant non-methane volatile organic compound (VOC) and the largest contributor to secondary organic aerosol (SOA) burden on a global scale. In order to examine the influence of high concentrations of anthropogenic pollutants on isoprene-derived SOA (SOA(i)) formation, summertime PM2.5 filter samples were collected with a three-hour sampling interval at a rural site in the North China Plain (NCP), and determined for SOA(i) tracers and other chemical species. RO2+NO pathway derived 2-methylglyceric acid presented a relatively higher contribution to the SOA, due to the high-NOx (similar to 20 ppb) conditions in the NCP that suppressed the reactive uptake of RO2+HO2 reaction derived isoprene epoxydiols. Compared to particle acidity and water content, sulfate plays a dominant role in the heterogeneous formation process of SOA(i). Diurnal variation and correlation of 2-methyltetrols with ozone suggested an important effect of isoprene ozonolysis on SOA(i) formation. SOA(i) increased linearly with levoglucosan during June 10-18, which can be attributed to an increasing emission of isoprene caused by the field burning of wheat straw and a favorable aqueous SOA formation during the aging process of the biomass burning plume. Our results suggested that isoprene oxidation is highly influenced by intensive anthropogenic activities in the NCP

    6,10,16,19-Tetra­oxatrispiro­[4.2.2.4.2.2]nona­deca­ne

    Get PDF
    The asymmetric unit of the title compound, C15H24O4, contains one half-mol­ecule; a twofold rotation axis passes through the central C atom. The non-planar six- and five-membered rings adopt chair and envelope conformations, respectively. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules

    Genetic variations of the porcine PRKAG3 gene in Chinese indigenous pig breeds

    Get PDF
    Four missense substitutions (T30N, G52S, V199I and R200Q) in the porcine PRKAG3 gene were considered as the likely candidate loci affecting meat quality. In this study, the R200Q substitution was investigated in a sample of 62 individuals from Hampshire, Chinese Min and Erhualian pigs, and the genetic variations of T30N, G52S and V199I substitutions were detected in 1505 individuals from 21 Chinese indigenous breeds, 5 Western commercial pig breeds, and the wild pig. Allele 200R was fixed in Chinese Min and Erhualian pigs. Haplotypes II-QQ and IV-QQ were not observed in the Hampshire population, supporting the hypothesis that allele 200Q is tightly linked with allele 199V. Significant differences in allele frequencies of the three substitutions (T30N, G52S and V199I) between Chinese indigenous pigs and Western commercial pigs were observed. Obvious high frequencies of the "favorable" alleles 30T and 52G in terms of meat quality were detected in Chinese indigenous pigs, which are well known for high meat quality. However, the frequency of the "favorable" allele 199I, which was reported to have a greater effect on meat quality in comparison with 30T and 52G, was very low in all of the Chinese indigenous pigs except for the Min pig. The reasons accounting for this discrepancy remain to be addressed. The presence of the three substitutions in purebred Chinese Tibetan pigs indicates that the three substitutions were ancestral mutations. A novel A/G substitution at position 51 in exon 1 was identified. The results suggest that further studies are required to investigate the associations of these substitutions in the PRKAG3 gene with meat quality of Chinese indigenous pigs, and to uncover other polymorphisms in the PRKAG3 gene with potential effects on meat quality in Chinese indigenous pigs

    Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater

    Get PDF
    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO\ua0→\ua0NO\ua0→\ua0N), and that of C-S by SRB (SO\ua0→\ua0S) and SOB (S\ua0→\ua0S) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater

    Porcine Reproductive and Respiratory Syndrome in Hybrid Wild Boars, China

    Get PDF
    We conducted a serologic investigation of porcine reproductive and respiratory syndrome virus (PRRSV) in hybrid wild boar herds in China during 2008–2009. PRRSV isolates with novel genetic markers were recovered. Experimental infection of pigs indicated that hybrid wild boars are involved in the epidemiology of PRRSV

    Fuzheng Huayu recipe prevents nutritional fibrosing steatohepatitis in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fuzheng Huayu recipe (FZHY), a compound of Chinese herbal medicine, was reported to improve liver function and fibrosis in patients with hepatitis B virus infection. However, its effect on nutritional fibrosing steatohepatitis is unclear. We aimed to elucidate the role and molecular mechanism of FZHY on this disorder in mice.</p> <p>Methods</p> <p>C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 8 weeks to induce fibrosing steatohepatitis. FZHY and/or heme oxygenase-1 (HO-1) chemical inducer (hemin) were administered to mice, respectively. The effect of FZHY was assessed by comparing the severity of hepatic injury, levels of hepatic lipid peroxides, activation of hepatic stellate cells (HSCs) and the expression of oxidative stress, inflammatory and fibrogenic related genes.</p> <p>Results</p> <p>Mice fed with MCD diet for 8 weeks showed severe hepatic injury including hepatic steatosis, necro-inflammation and fibrosis. Administration of FZHY or hemin significantly lowered serum levels of alanine aminotransferase, aspartate aminotransferase, reduced hepatic oxidative stress and ameliorated hepatic inflammation and fibrosis. An additive effect was observed in mice fed MCD supplemented with FZHY or/and hemin. These effects were associated with down-regulation of pro-oxidative stress gene cytochrome P450 2E1, up-regulation of anti-oxidative gene HO-1; suppression of pro-inflammation genes tumor necrosis factor alpha and interleukin-6; and inhibition of pro-fibrotic genes including α-smooth muscle actin, transforming growth factor beta 1, collagen type I (Col-1) and Col-3.</p> <p>Conclusions</p> <p>Our study demonstrated the protective role of FZHY in ameliorating nutritional fibrosing steatohepatitis. The effect was mediated through regulating key genes related to oxidative stress, inflammation and fibrogenesis.</p
    corecore