35 research outputs found

    Effects of E/Z Configuration of Fluoroalkene-containing HDAC Inhibitors on Selectivity for HDAC Isoforms

    Get PDF
    Histone deacetylase (HDAC) inhibitors belong to a new class of potential anticancer agents. It may be possible to reduce some of the toxicity by specifically targeting only the HDAC isoform. Here, stereoisomeric HDAC inhibitors containing fluoroalkene were analyzed for their specificity toward HDAC isoforms. Z-Form 1(Z) showed high affinity to HDACs whereas E-isoform 1(E) had lower affinity to HDAC1 and HDAC4. These data suggested that introduction of alkene with E/Z configuration to HDAC inhibitor can be a new strategy to develop the isoform-selective HDAC inhibitors

    Establishment and Identification of a CiPSC Lineage Reprogrammed from FSP-tdTomato Mouse Embryonic Fibroblasts (MEFs)

    No full text
    Safety issues associated with transcription factors or viruses may be avoided with the use of chemically induced pluripotent stem cells (CiPSCs), thus promoting their clinical application. Previously, we had successfully developed and standardized an induction method using small-molecule compound, with simple operation, uniform induction conditions, and clear constituents. In order to verify that the CiPSCs were indeed reprogrammed from mouse embryonic fibroblasts (MEFs), and further explore the underlying mechanisms, FSP-tdTomato mice were used to construct a fluorescent protein-tracking system of MEFs, for revealing the process of CiPSC reprogramming. CiPSCs were identified by morphological analysis, mRNA, and protein expression of pluripotency genes, as well as teratoma formation experiments. Results showed that after 40-day treatment of tdTomato-MEFs with small-molecule compounds, the cells were presented with prominent nucleoli, high core-to-cytoplasmic ratio, round shape, group and mass arrangement, and high expression of pluripotency gene. These cells could differentiate into three germ layer tissues in vivo. As indicated by the above results, tdTomato-MEFs could be reprogrammed into CiPSCs, a lineage that possesses pluripotency similar to mouse embryonic stem cells (mESCs), with the use of small-molecule compounds. The establishment of CiPSC lineage, tracked by fluorescent protein, would benefit further studies exploring its underlying mechanisms. With continuous expression of fluorescent proteins during cellular differentiation, this cell lineage could be used for tracking CiPSC transplantation and differentiation into functional cells

    Screening Genes Promoting Exit from Naive Pluripotency Based on Genome-Scale CRISPR-Cas9 Knockout

    No full text
    Two of the main problems of stem cell and regenerative medicine are the exit of pluripotency and differentiation to functional cells or tissues. The answer to these two problems holds great value in the clinical translation of stem cell as well as regenerative medicine research. Although piling researches have revealed the truth about pluripotency maintenance, the mechanisms underlying pluripotent cell self-renewal, proliferation, and differentiation into specific cell lineages or tissues are yet to be defined. To this end, we took full advantage of a novel technology, namely, the genome-scale CRISPR-Cas9 knockout (GeCKO). As an effective way of introducing targeted loss-of-function mutations at specific sites in the genome, GeCKO is able to screen in an unbiased manner for key genes that promote exit from pluripotency in mouse embryonic stem cells (mESCs) for the first time. In this study, we successfully established a model based on GeCKO to screen the key genes in pluripotency withdrawal. Our strategies included lentiviral package and infection technology, lenti-Cas9 gene knockout technology, shRNA gene knockdown technology, next-generation sequencing, model-based analysis of genome-scale CRISPR-Cas9 knockout (MAGeCK analysis), GO analysis, and other methods. Our findings provide a novel approach for large-scale screening of genes involved in pluripotency exit and offer an entry point for cell fate regulation research

    c-Jun as a one-way valve at the naive to primed interface

    No full text
    Abstract Background c-Jun is a proto-oncogene functioning as a transcription factor to activate gene expression under many physiological and pathological conditions, particularly in somatic cells. However, its role in early embryonic development remains unknown. Results Here, we show that c-Jun acts as a one-way valve to preserve the primed state and impair reversion to the naïve state. c-Jun is induced during the naive to primed transition, and it works to stabilize the chromatin structure and inhibit the reverse transition. Loss of c-Jun has surprisingly little effect on the naïve to primed transition, and no phenotypic effect on primed cells, however, in primed cells the loss of c-Jun leads to a failure to correctly close naïve-specific enhancers. When the primed cells are induced to reprogram to a naïve state, these enhancers are more rapidly activated when c-Jun is lost or impaired, and the conversion is more efficient. Conclusions The results of this study indicate that c-Jun can function as a chromatin stabilizer in primed EpiSCs, to maintain the epigenetic cell type state and act as a one-way valve for cell fate conversions

    Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency

    No full text
    In contrast to conventional human pluripotent stem cells (hPSCs) that are related to post-implantation embryo stages, naive hPSCs exhibit features of pre-implantation epiblast. Naive hPSCs are established by resetting conventional hPSCs, or are derived from dissociated embryo inner cell masses. Here we investigate conditions for transgene-free reprogramming of human somatic cells to naive pluripotency. We find that Wnt inhibition promotes RNA-mediated induction of naive pluripotency. We demonstrate application to independent human fibroblast cultures and endothelial progenitor cells. We show that induced naive hPSCs can be clonally expanded with a diploid karyotype and undergo somatic lineage differentiation following formative transition. Induced naive hPSC lines exhibit distinctive surface marker, transcriptome, and methylome properties of naive epiblast identity. This system for efficient, facile, and reliable induction of transgene-free naive hPSCs offers a robust platform, both for delineation of human reprogramming trajectories and for evaluating the attributes of isogenic naive versus conventional hPSCs

    Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency.

    No full text
    In contrast to conventional human pluripotent stem cells (hPSCs) that are related to post-implantation embryo stages, naive hPSCs exhibit features of pre-implantation epiblast. Naive hPSCs are established by resetting conventional hPSCs, or are derived from dissociated embryo inner cell masses. Here we investigate conditions for transgene-free reprogramming of human somatic cells to naive pluripotency. We find that Wnt inhibition promotes RNA-mediated induction of naive pluripotency. We demonstrate application to independent human fibroblast cultures and endothelial progenitor cells. We show that induced naive hPSCs can be clonally expanded with a diploid karyotype and undergo somatic lineage differentiation following formative transition. Induced naive hPSC lines exhibit distinctive surface marker, transcriptome, and methylome properties of naive epiblast identity. This system for efficient, facile, and reliable induction of transgene-free naive hPSCs offers a robust platform, both for delineation of human reprogramming trajectories and for evaluating the attributes of isogenic naive versus conventional hPSCs.This research was funded by the Medical Research Council of the United Kingdom (G1001028 and MR/P00072X/1) and European Commission Framework 7 (HEALTHF4-2013-602423, PluriMes). JY was supported by the Guangdong Provincial Key Laboratory, and FvM by a UKRI/MRC Rutherford Fund Fellowship. The Cambridge Stem Cell Institute receives core support from Wellcome and the Medical Research Council. AS is a Medical Research Council Professor
    corecore