105 research outputs found

    Harvesting Discriminative Meta Objects with Deep CNN Features for Scene Classification

    Get PDF
    Recent work on scene classification still makes use of generic CNN features in a rudimentary manner. In this ICCV 2015 paper, we present a novel pipeline built upon deep CNN features to harvest discriminative visual objects and parts for scene classification. We first use a region proposal technique to generate a set of high-quality patches potentially containing objects, and apply a pre-trained CNN to extract generic deep features from these patches. Then we perform both unsupervised and weakly supervised learning to screen these patches and discover discriminative ones representing category-specific objects and parts. We further apply discriminative clustering enhanced with local CNN fine-tuning to aggregate similar objects and parts into groups, called meta objects. A scene image representation is constructed by pooling the feature response maps of all the learned meta objects at multiple spatial scales. We have confirmed that the scene image representation obtained using this new pipeline is capable of delivering state-of-the-art performance on two popular scene benchmark datasets, MIT Indoor 67~\cite{MITIndoor67} and Sun397~\cite{Sun397}Comment: To Appear in ICCV 201

    Constrained K-means with General Pairwise and Cardinality Constraints

    Full text link
    In this work, we study constrained clustering, where constraints are utilized to guide the clustering process. In existing works, two categories of constraints have been widely explored, namely pairwise and cardinality constraints. Pairwise constraints enforce the cluster labels of two instances to be the same (must-link constraints) or different (cannot-link constraints). Cardinality constraints encourage cluster sizes to satisfy a user-specified distribution. However, most existing constrained clustering models can only utilize one category of constraints at a time. In this paper, we enforce the above two categories into a unified clustering model starting with the integer program formulation of the standard K-means. As these two categories provide useful information at different levels, utilizing both of them is expected to allow for better clustering performance. However, the optimization is difficult due to the binary and quadratic constraints in the proposed unified formulation. To alleviate this difficulty, we utilize two techniques: equivalently replacing the binary constraints by the intersection of two continuous constraints; the other is transforming the quadratic constraints into bi-linear constraints by introducing extra variables. Then we derive an equivalent continuous reformulation with simple constraints, which can be efficiently solved by Alternating Direction Method of Multipliers (ADMM) algorithm. Extensive experiments on both synthetic and real data demonstrate: (1) when utilizing a single category of constraint, the proposed model is superior to or competitive with state-of-the-art constrained clustering models, and (2) when utilizing both categories of constraints jointly, the proposed model shows better performance than the case of the single category

    Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared Adversarial Examples

    Full text link
    Backdoor attacks are serious security threats to machine learning models where an adversary can inject poisoned samples into the training set, causing a backdoored model which predicts poisoned samples with particular triggers to particular target classes, while behaving normally on benign samples. In this paper, we explore the task of purifying a backdoored model using a small clean dataset. By establishing the connection between backdoor risk and adversarial risk, we derive a novel upper bound for backdoor risk, which mainly captures the risk on the shared adversarial examples (SAEs) between the backdoored model and the purified model. This upper bound further suggests a novel bi-level optimization problem for mitigating backdoor using adversarial training techniques. To solve it, we propose Shared Adversarial Unlearning (SAU). Specifically, SAU first generates SAEs, and then, unlearns the generated SAEs such that they are either correctly classified by the purified model and/or differently classified by the two models, such that the backdoor effect in the backdoored model will be mitigated in the purified model. Experiments on various benchmark datasets and network architectures show that our proposed method achieves state-of-the-art performance for backdoor defense

    UCF: Uncovering Common Features for Generalizable Deepfake Detection

    Full text link
    Deepfake detection remains a challenging task due to the difficulty of generalizing to new types of forgeries. This problem primarily stems from the overfitting of existing detection methods to forgery-irrelevant features and method-specific patterns. The latter has been rarely studied and not well addressed by previous works. This paper presents a novel approach to address the two types of overfitting issues by uncovering common forgery features. Specifically, we first propose a disentanglement framework that decomposes image information into three distinct components: forgery-irrelevant, method-specific forgery, and common forgery features. To ensure the decoupling of method-specific and common forgery features, a multi-task learning strategy is employed, including a multi-class classification that predicts the category of the forgery method and a binary classification that distinguishes the real from the fake. Additionally, a conditional decoder is designed to utilize forgery features as a condition along with forgery-irrelevant features to generate reconstructed images. Furthermore, a contrastive regularization technique is proposed to encourage the disentanglement of the common and specific forgery features. Ultimately, we only utilize the common forgery features for the purpose of generalizable deepfake detection. Extensive evaluations demonstrate that our framework can perform superior generalization than current state-of-the-art methods

    VDC: Versatile Data Cleanser for Detecting Dirty Samples via Visual-Linguistic Inconsistency

    Full text link
    The role of data in building AI systems has recently been emphasized by the emerging concept of data-centric AI. Unfortunately, in the real-world, datasets may contain dirty samples, such as poisoned samples from backdoor attack, noisy labels in crowdsourcing, and even hybrids of them. The presence of such dirty samples makes the DNNs vunerable and unreliable.Hence, it is critical to detect dirty samples to improve the quality and realiability of dataset. Existing detectors only focus on detecting poisoned samples or noisy labels, that are often prone to weak generalization when dealing with dirty samples from other domains.In this paper, we find a commonality of various dirty samples is visual-linguistic inconsistency between images and associated labels. To capture the semantic inconsistency between modalities, we propose versatile data cleanser (VDC) leveraging the surpassing capabilities of multimodal large language models (MLLM) in cross-modal alignment and reasoning.It consists of three consecutive modules: the visual question generation module to generate insightful questions about the image; the visual question answering module to acquire the semantics of the visual content by answering the questions with MLLM; followed by the visual answer evaluation module to evaluate the inconsistency.Extensive experiments demonstrate its superior performance and generalization to various categories and types of dirty samples.Comment: 22 pages,5 figures,17 table
    • …
    corecore