52 research outputs found

    Comparison of Measured Acceptances of Petra with Results from Beam Tracking

    Full text link

    Apoptosis induced by the Tibetan herbal remedy PADMA 28 in the T cell-derived lymphocytic leukaemia cell line CEM-C7H2

    Get PDF
    The Tibetan herbal remedy PADMA 28 revealed promising results to support treatment of atherosclerosis, Charot syndrome (intermittent claudication), chronic active hepatitis and infection of the respiratory tract. The remedy was confirmed to be closely linked with anti- and pro-oxidative properties in vitro. In this study, apoptogenic and survival effects of PADMA 28 were investigated in the T cell-derived lymphocytic leukaemia cell line CEM-C7H2. PADMA 28 led to a concentration-dependent inhibition of cell proliferation accompanied by the accumulation of CEM-C7H2 cells in subG1 phase, fragmentation of poly (ADP-ribose) polymerase (PARP) and nuclear body formation. Treatment with PADMA 28 rescued to some extent cells over-expressing Bcl-2 from apoptosis. This finding suggests that the mechanism of action of PADMA 28 may be via interference with Bcl-2 triggered survival pathways

    Effects of EpCAM overexpression on human breast cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these patients.</p> <p>Methods</p> <p>In order to explore molecular changes following EpCAM overexpression, we investigated changes of the transcriptome upon EpCAM gene expression in commercially available human breast cancer cells lines Hs578T and MDA-MB-231. To assess cell proliferation, a tetrazolium salt based assay was performed. A TCF/LEF Reporter Kit was used to measure the transcriptional activity of the Wnt/β-catenin pathway. To evaluate the accumulation of β-catenin in the nucleus, a subcellular fractionation assay was performed.</p> <p>Results</p> <p>For the first time we could show that expression profiling data of EpCAM transfected cell lines Hs578T<sup>EpCAM </sup>and MDA-MB-231<sup>EpCAM </sup>indicate an association of EpCAM overexpression with the downregulation of the Wnt signaling inhibitors SFRP1 and TCF7L2. Confirmation of increased Wnt signaling was provided by a TCF/LEF reporter kit and by the finding of the nuclear accumulation of ß-catenin for MDA-MB-231<sup>EpCAM </sup>but not Hs578T<sup>EpCAM </sup>cells. In Hs578T cells, an increase of proliferation and chemosensitivity to Docetaxel was associated with EpCAM overexpression.</p> <p>Conclusions</p> <p>These data show a cell type dependent modification of Wnt signaling components after EpCAM overexpression in breast cancer cell lines, which results in marginal functional changes. Further investigations on the interaction of EpCAM with SFRP1 and TCF7L2 and on additional factors, which may be causal for changes upon EpCAM overexpression, will help to characterize unique molecular properties of EpCAM-positive breast cancer cells.</p

    An update on the strategies in multicomponent activity monitoring within the phytopharmaceutical field

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To-date modern drug research has focused on the discovery and synthesis of single active substances. However, multicomponent preparations are gaining increasing importance in the phytopharmaceutical field by demonstrating beneficial properties with respect to efficacy and toxicity.</p> <p>Discussion</p> <p>In contrast to single drug combinations, a botanical multicomponent therapeutic possesses a complex repertoire of chemicals that belong to a variety of substance classes. This may explain the frequently observed pleiotropic bioactivity spectra of these compounds, which may also suggest that they possess novel therapeutic opportunities. Interestingly, considerable bioactivity properties are exhibited not only by remedies that contain high doses of phytochemicals with prominent pharmaceutical efficacy, but also preparations that lack a sole active principle component. Despite that each individual substance within these multicomponents has a low molar fraction, the therapeutic activity of these substances is established via a potentialization of their effects through combined and simultaneous attacks on multiple molecular targets. Although beneficial properties may emerge from such a broad range of perturbations on cellular machinery, validation and/or prediction of their activity profiles is accompanied with a variety of difficulties in generic risk-benefit assessments. Thus, it is recommended that a comprehensive strategy is implemented to cover the entirety of multicomponent-multitarget effects, so as to address the limitations of conventional approaches.</p> <p>Summary</p> <p>An integration of standard toxicological methods with selected pathway-focused bioassays and unbiased data acquisition strategies (such as gene expression analysis) would be advantageous in building an interaction network model to consider all of the effects, whether they were intended or adverse reactions.</p
    • …
    corecore