1,254 research outputs found
Energies and collapse times of symmetric and symmetry-breaking states of finite systems with a U(1) symmetry
We study quantum systems of volume V, which will exhibit the breaking of a
U(1) symmetry in the limit of V \to \infty, when V is large but finite. We
estimate the energy difference between the `symmetric ground state' (SGS),
which is the lowest-energy state that does not breaks the symmetry, and a `pure
phase vacuum' (PPV), which approaches a symmetry-breaking vacuum as V \to
\infty. Under some natural postulates on the energy of the SGS, it is shown
that PPVs always have a higher energy than the SGS, and we derive a lower bound
of the excess energy. We argue that the lower bound is O(V^0), which becomes
much larger than the excitation energies of low-lying excited states for a
large V. We also discuss the collapse time of PPVs for interacting many bosons.
It is shown that the wave function collapses in a microscopic time scale,
because PPVs are not energy eigenstates. We show, however, that for PPVs the
expectation value of any observable, which is a finite polynomial of boson
operators and their derivatives, does not collapse for a macroscopic time
scale. In this sense, the collapse time of PPVs is macroscopically long.Comment: In the revised manuscript, Eq. (22), Ref. [8], and Notes [13], [15]
and [17] have been adde
Interference between the halves of a double-well trap containing a Bose-Einstein condensate
Interference between the halves of a double-well trap containing a
Bose-Einstein condensate is studied. It is found that when the atoms in the two
wells are initially in the coherent state, the intensity exhibits collapses and
revivals, but it does not for the initial Fock states. Whether the initial
states are in the coherent states or in a Fock states, the fidelity time has
nothing to do with collision. We point out that interference and its fidelity
can be adjusted experimentally by properly preparing the number and initial
states of the system.Comment: 10 pages, 3 figures, accepted by Phy. rev.
Testing Broken U(1) Symmetry in a Two-Component Atomic Bose-Einstein Condensate
We present a scheme for determining if the quantum state of a small trapped
Bose-Einstein condensate is a state with well defined number of atoms, a Fock
state, or a state with a broken U(1) gauge symmetry, a coherent state. The
proposal is based on the observation of Ramsey fringes. The population
difference observed in a Ramsey fringe experiment will exhibit collapse and
revivals due to the mean-field interactions. The collapse and revival times
depend on the relative strength of the mean-field interactions for the two
components and the initial quantum state of the condensate.Comment: 20 Pages RevTex, 3 Figure
The dynamics of quantum phases in a spinor condensate
We discuss the quantum phases and their diffusion dynamics in a spinor-1
atomic Bose-Einstein condensate. For ferromagnetic interactions, we obtain the
exact ground state distribution of the phases associated with the total atom
number (), the total magnetization (), and the alignment (or
hypercharge) () of the system. The mean field ground state is stable against
fluctuations of atom numbers in each of the spin components, and the phases
associated with the order parameter for each spin components diffuse while
dynamically recover the two broken continuous symmetries [U(1) and SO(2)] when
and are conserved as in current experiments. We discuss the
implications to the quantum dynamics due to an external (homogeneous) magnetic
field. We also comment on the case of a spinor-1 condensate with
anti-ferromagnetic interactions.Comment: 5 figures, an extended version of cond-mat/030117
Understanding Terrorist Organizations with a Dynamic Model
Terrorist organizations change over time because of processes such as
recruitment and training as well as counter-terrorism (CT) measures, but the
effects of these processes are typically studied qualitatively and in
separation from each other. Seeking a more quantitative and integrated
understanding, we constructed a simple dynamic model where equations describe
how these processes change an organization's membership. Analysis of the model
yields a number of intuitive as well as novel findings. Most importantly it
becomes possible to predict whether counter-terrorism measures would be
sufficient to defeat the organization. Furthermore, we can prove in general
that an organization would collapse if its strength and its pool of foot
soldiers decline simultaneously. In contrast, a simultaneous decline in its
strength and its pool of leaders is often insufficient and short-termed. These
results and other like them demonstrate the great potential of dynamic models
for informing terrorism scholarship and counter-terrorism policy making.Comment: To appear as Springer Lecture Notes in Computer Science v2:
vectorized 4 figures, fixed two typos, more detailed bibliograph
Condensate fluctuations in finite Bose-Einstein condensates at finite temperature
A Langevin equation for the complex amplitude of a single-mode Bose-Einstein
condensate is derived. The equation is first formulated phenomenologically,
defining three transport parameters. It is then also derived microscopically.
Expressions for the transport parameters in the form of Green-Kubo formulas are
thereby derived and evaluated for simple trap geometries, a cubic box with
cyclic boundary conditions and an isotropic parabolic trap. The number
fluctuations in the condensate, their correlation time, and the
temperature-dependent collapse-time of the order parameter as well as its
phase-diffusion coefficient are calculated.Comment: 29 pages, Revtex, to appear in Phys.Rev.
Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0
< Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons
from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is
significantly smaller than the sqrt{R} positivity limit over the measured
range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We
obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The
Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range
0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
Constraining the Power Spectrum using Clusters
(Shortened Abstract). We analyze a redshift sample of Abell/ACO clusters and
compare them with numerical simulations based on the truncated Zel'dovich
approximation (TZA), for a list of eleven dark matter (DM) models. For each
model we run several realizations, on which we estimate cosmic variance
effects. We analyse correlation statistics, the probability density function,
and supercluster properties from percolation analysis. As a general result, we
find that the distribution of galaxy clusters provides a constraint only on the
shape of the power spectrum, but not on its amplitude: a shape parameter 0.18 <
\Gamma < 0.25 and an effective spectral index at 20Mpc/h in the range
[-1.1,-0.9] are required by the Abell/ACO data. In order to obtain
complementary constraints on the spectrum amplitude, we consider the cluster
abundance as estimated using the Press--Schechter approach, whose reliability
is explicitly tested against N--body simulations. We conclude that, of the
cosmological models considered here, the only viable models are either Cold+Hot
DM ones with \Omega_\nu = [0.2-0.3], better if shared between two massive
neutrinos, and flat low-density CDM models with \Omega_0 = [0.3-0.5].Comment: 37 pages, Latex file, 9 figures; New Astronomy, in pres
Socioeconomic status and access to care and the incidence of a heart failure diagnosis in the inpatient and outpatient settings
Purpose: Despite well-documented associations of socioeconomic status with incident heart failure (HF) hospitalization, little information exists on the relationship of socioeconomic status with HF diagnosed in the outpatient (OP) setting. Methods: We used Poisson models to examine the association of area-level indicators of educational attainment, poverty, living situation, and density of primary care physicians with incident HF diagnosed in the inpatient (IP) and OP settings among a cohort of Medicare beneficiaries (n = 109,756; 2001–2013). Results: The age-standardized rate of HF incidence was 35.8 (95% confidence interval [CI], 35.1–36.5) and 13.9 (95% CI, 13.5–14.4) cases per 1000 person-years in IP and OP settings, respectively. The incidence rate differences (IRDs) per 1000 person-years in both settings suggested greater incidence of HF in high- compared to low-poverty areas (IP IRD = 4.47 [95% CI, 3.29–5.65], OP IRD = 1.41 [95% CI, 0.61–2.22]) and in low- compared to high-education areas (IP IRD = 3.73 [95% CI, 2.63–4.82], OP IRD = 1.72 [95% CI, 0.97–2.47]). Conclusions: Our results highlight the role of area-level social determinants of health in the incidence of HF in both the IP and OP settings. These findings may have implications for HF prevention policies
- …