3,467 research outputs found

    Operative versus nonoperative treatment of acute Achilles tendon ruptures: A pilot economic decision analysis

    Get PDF
    Background: The operative treatment of Achilles tendon ruptures has been associated with lower rerupture rates and better function but also a risk of surgery-related complications compared with nonoperative treatment, which may provide improved outcomes with accelerated rehabilitation protocols. However, economic decision analyses integrating the updated costs of both treatment options are limited in the literature. Purpose: To compare the cost-effectiveness of operative and nonoperative treatment of acute Achilles tendon tears. Study Design: Economic and decision analysis; Level of evidence, 2. Methods: An economic decision model was built to assess the cost-utility ratio (CUR) of open primary repair versus nonoperative treatment for acute Achilles tendon ruptures, based on direct costs from the practices of sports medicine and foot and ankle surgeons at a single tertiary academic center, with published outcome probabilities and patient utility data. Multiway sensitivity analyses were performed to reflect the range of data. Results: Nonoperative treatment was more cost-effective in the average scenario (nonoperative CUR, US520;operativeCUR,US520; operative CUR, US1995), but crossover occurred during the sensitivity analysis (nonoperative CUR range, US224−US224-US2079; operative CUR range, US789−US789-US8380). Operative treatment cost an extra average marginal CUR of US$1475 compared with nonoperative treatment, assuming uneventful healing in both treatment arms. The sensitivity analysis demonstrated a decreased marginal CUR of operative treatment when the outcome utility was maximized, and rerupture rates were minimized compared with nonoperative treatment. Conclusion: Nonoperative treatment was more cost-effective in average scenarios. Crossover indicated that open primary repair would be favorable for maximized outcome utility, such as that for young athletes or heavy laborers. The treatment decision for acute Achilles tendon ruptures should be individualized. These pilot results provide inferences for further longitudinal analyses incorporating future clinical evidence

    The NASA-UC Eta-Earth Program: I. A Super-Earth Orbiting HD 7924

    Get PDF
    We report the discovery of the first low-mass planet to emerge from the NASA-UC Eta-Earth Program, a super-Earth orbiting the K0 dwarf HD 7924. Keplerian modeling of precise Doppler radial velocities reveals a planet with minimum mass M_P sin i = 9.26 M_Earth in a P = 5.398 d orbit. Based on Keck-HIRES measurements from 2001 to 2008, the planet is robustly detected with an estimated false alarm probability of less than 0.001. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 7924 is photometrically constant over the radial velocity period to 0.19 mmag, supporting the existence of the planetary companion. No transits were detected down to a photometric limit of ~0.5 mmag, eliminating transiting planets with a variety of compositions. HD 7924b is one of only eight planets known with M_P sin i < 10 M_Earth and as such is a member of an emerging family of low-mass planets that together constrain theories of planet formation.Comment: ApJ accepted, 10 pages, 10 figures, 4 table

    No increase in corticospinal excitability during motor simulation provides a platform to explore the neurophysiology of aphantasia

    Get PDF
    This scientific commentary refers to ‘Explicit and implicit motor simulations are impaired in individuals with aphantasia’, by Dupont  et al. (https://doi.org/10.1093/braincomms/fcae072) in Brain Communication

    The 55 Cancri Planetary System: Fully Self-Consistent N-body Constraints and a Dynamical Analysis

    Get PDF
    We present an updated study of the planets known to orbit 55 Cancri A using 1,418 high-precision radial velocity observations from four observatories (Lick, Keck, Hobby-Eberly Telescope, Harlan J. Smith Telescope) and transit time/durations for the inner-most planet, 55 Cancri "e" (Winn et al. 2011). We provide the first posterior sample for the masses and orbital parameters based on self-consistent n-body orbital solutions for the 55 Cancri planets, all of which are dynamically stable (for at least 10810^8 years). We apply a GPU version of Radial velocity Using N-body Differential evolution Markov Chain Monte Carlo (RUN DMC; B. Nelson et al. 2014) to perform a Bayesian analysis of the radial velocity and transit observations. Each of the planets in this remarkable system has unique characteristics. Our investigation of high-cadence radial velocities and priors based on space-based photometry yields an updated mass estimate for planet "e" (8.09±0.268.09\pm0.26 M⊕_\oplus), which affects its density (5.51±1.001.325.51\pm^{1.32}_{1.00} g cm−3^{-3}) and inferred bulk composition. Dynamical stability dictates that the orbital plane of planet "e" must be aligned to within 60o60^o of the orbital plane of the outer planets (which we assume to be coplanar). The mutual interactions between the planets "b" and "c" may develop an apsidal lock about 180o180^o. We find 36-45% of all our model systems librate about the anti-aligned configuration with an amplitude of 51o±10o6o51^o\pm^{6^o}_{10^o}. Other cases showed short-term perturbations in the libration of ϖb−ϖc\varpi_b-\varpi_c, circulation, and nodding, but we find the planets are not in a 3:1 mean-motion resonance. A revised orbital period and eccentricity for planet "d" pushes it further toward the closest known Jupiter analog in the exoplanet population.Comment: 12 pages, 5 figures, 4 tables, accepted to MNRAS. Figure 2 (left) is updated from published version. Posterior samples available at http://www.personal.psu.edu/ben125/Downloads.htm
    • …
    corecore