1,284 research outputs found

    Curriculum Change is a Slow Process

    Get PDF

    COMMENCEMENT ’90: A Historic Occasion: Beating the Odds

    Get PDF
    Commencement Speech by Marian Wright Edelme

    The Cradle to Prison Pipeline: An American Health Crisis

    Get PDF

    The Status of the Children

    Get PDF

    Investing in our Children

    Get PDF
    As adults we are responsible for meeting the needs of children. It is our moral obligation to help children survive, thrive and grow into self-sufficient adults - caring parents, competent workers with a fair opportunity for success and fulfillment, and responsible citizens. Adult society must provide children with food, shelter, medical care, and an environment that is both secure and stimulating. Children need our assistance to obtain the decent education they deserve, to prepare to compete in the job market, to make sound decisions about when to become parents, to feel valued and valuable, and to feel that they have a fair chance to succeed

    Weak Lensing Peak Finding: Estimators, Filters, and Biases

    Get PDF
    Large catalogs of shear-selected peaks have recently become a reality. In order to properly interpret the abundance and properties of these peaks, it is necessary to take into account the effects of the clustering of source galaxies, among themselves and with the lens. In addition, the preferred selection of lensed galaxies in a flux- and size-limited sample leads to fluctuations in the apparent source density which correlate with the lensing field (lensing bias). In this paper, we investigate these issues for two different choices of shear estimators which are commonly in use today: globally-normalized and locally-normalized estimators. While in principle equivalent, in practice these estimators respond differently to systematic effects such as lensing bias and cluster member dilution. Furthermore, we find that which estimator is statistically superior depends on the specific shape of the filter employed for peak finding; suboptimal choices of the estimator+filter combination can result in a suppression of the number of high peaks by orders of magnitude. Lensing bias generally acts to increase the signal-to-noise \nu of shear peaks; for high peaks the boost can be as large as \Delta \nu ~ 1-2. Due to the steepness of the peak abundance function, these boosts can result in a significant increase in the abundance of shear peaks. A companion paper (Rozo et al., 2010) investigates these same issues within the context of stacked weak lensing mass estimates.Comment: 11 pages, 8 figures; comments welcom

    Optimal capture of non-Gaussianity in weak lensing surveys: power spectrum, bispectrum and halo counts

    Full text link
    We compare the efficiency of weak lensing-selected galaxy clusters counts and of the weak lensing bispectrum at capturing non-Gaussian features in the dark matter distribution. We use the halo model to compute the weak lensing power spectrum, the bispectrum and the expected number of detected clusters, and derive constraints on cosmological parameters for a large, low systematic weak lensing survey, by focusing on the Ωm\Omega_m-σ8\sigma_8 plane and on the dark energy equation of state. We separate the power spectrum into the resolved and the unresolved parts of the data, the resolved part being defined as detected clusters, and the unresolved part as the rest of the field. We consider four kinds of clusters counts, taking into account different amount of information : signal-to-noise ratio peak counts; counts as a function of clusters' mass; counts as a function of clusters' redshift; and counts as a function of clusters' mass and redshift. We show that when combined with the power spectrum, those four kinds of counts provide similar constraints, thus allowing one to perform the most direct counts, signal-to-noise peaks counts, and get percent level constraints on cosmological parameters. We show that the weak lensing bispectrum gives constraints comparable to those given by the power spectrum and captures non-Gaussian features as well as clusters counts, its combination with the power spectrum giving errors on cosmological parameters that are similar to, if not marginally smaller than, those obtained when combining the power spectrum with cluster counts. We finally note that in order to reach its potential, the weak lensing bispectrum must be computed using all triangle configurations, as equilateral triangles alone do not provide useful information.Comment: Matches ApJ-accepted versio
    • …
    corecore