4,802 research outputs found

    Does measurement technique explain the mismatch between European head size and WHO charts?

    Get PDF
    Objective To test whether different measuring techniques produce systematic differences in head size that could explain the large head circumferences found in Northern European children compared with the WHO standard. Design: Cross-sectional observational study. Setting: Scotland, UK. Patients: Study 1: 68 healthy children aged 0.4–18 months from mother and baby groups and a medical students teaching session. Study 2: 81 children aged 0.4 to 25 months from hospital wards and neonatal follow-up clinics. Interventions: Study 1: heads measured with plastic tape using both the WHO tight and UK loose technique. Study 2: heads measured using WHO research technique and a metal measuring tape and compared with routinely acquired measurements. Main outcome measures: Mean difference in head z-scores using WHO standard between the two methods. Results: The tight technique resulted in a mean (95% CI) z-score difference of 0.41 (0.27 to 0.54, p<0.001) in study 1 and 0.44 (0.36 to 0.53, p<0.001) in study 2. However, the mean WHO measurements in the healthy infants still produced a mean z-score that was two-third of a centile space (0.54 SD (0.28 to 0.79) p<0.001) above the 50th centile. Conclusion: The WHO measurement techniques produced significantly lower measures of head size, but average healthy Scottish children still had larger heads than the WHO standard using this method

    Evidence for extended IR emission in NGC2798 and NGC6240

    Get PDF
    Extended emission at 10 and 20 microns can be used to distinguish starbursts from monsters as the underlying energy source driving the luminous infrared emission in the central regions of galaxies. The spatial extent of the mid infrared emission in the interacting galaxy NCG 2798 and the merger NGC 6240 were investigated. The 10 and 20 micron profiles of the IR source in NGC 2798 are significantly wider than beam profiles measured on a standard star, supporting a starburst interpretation of its IR luminosity. For NGC 6240 there is marginal evidence for an extended 10 micron source, suggesting that a significant fraction of its IR luminosity could be produced by a burst of star formation

    Evidence for a Molecular Cloud Origin for Gamma-Ray Bursts: Implications for the Nature of Star Formation in the Universe

    Get PDF
    It appears that the majority of rapidly-, well-localized gamma-ray bursts with undetected, or dark, optical afterglows, or `dark bursts' for short, occur in clouds of size R > 10L_{49}^{1/2} pc and mass M > 3x10^5L_{49} M_{sun}, where L is the isotropic-equivalent peak luminosity of the optical flash. We show that clouds of this size and mass cannot be modeled as a gas that is bound by pressure equilibrium with a warm or hot phase of the interstellar medium (i.e., a diffuse cloud): Such a cloud would be unstable to gravitational collapse, resulting in the collapse and fragmentation of the cloud until a burst of star formation re-establishes pressure equilibrium within the fragments, and the fragments are bound by self-gravity (i.e., a molecular cloud). Consequently, dark bursts probably occur in molecular clouds, in which case dark bursts are probably a byproduct of this burst of star formation if the molecular cloud formed recently, and/or the result of lingering or latter generation star formation if the molecular cloud formed some time ago. We then show that if bursts occur in Galactic-like molecular clouds, the column densities of which might be universal, the number of dark bursts can be comparable to the number of bursts with detected optical afterglows: This is what is observed, which suggests that the bursts with detected optical afterglows might also occur in molecular clouds. We confirm this by modeling and constraining the distribution of column densities, measured from absorption of the X-ray afterglow, of the bursts with detected optical afterglows: We find that this distribution is consistent with the expectation for bursts that occur in molecular clouds, and is not consistent with the expectation for bursts that occur in diffuse clouds. More...Comment: Accepted to The Astrophysical Journal, 22 pages, 6 figures, LaTe

    Infrared images of merging galaxies

    Get PDF
    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus

    Extragalactic infrared spectroscopy

    Get PDF
    The spectra of galaxies in the near infrared atmospheric transmission windows are explored. Emission lines were detected due to molecular hydrogen, atomic hydrogen recombination lines, a line attributed to FEII, and a broad CO absorption feature. Lines due to H2 and FEII are especially strong in interacting and merging galaxies, but they were also detected in Seyferts and normal spirals. These lines appear to be shock excited. Multi-aperture measurements show that they emanate from regions as large as 15 kpc. It is argued that starbursts provide the most plausible and consistent model for the excitation of these lines, but the changes of relative line intensity of various species with aperture suggest that other excitation mechanisms are also operating in the outer regions of these galaxies

    Intrinsic noise and discrete-time processes

    Full text link
    A general formalism is developed to construct a Markov chain model that converges to a one-dimensional map in the infinite population limit. Stochastic fluctuations are therefore internal to the system and not externally specified. For finite populations an approximate Gaussian scheme is devised to describe the stochastic fluctuations in the non-chaotic regime. More generally, the stochastic dynamics can be captured using a stochastic difference equation, derived through an approximation to the Markov chain. The scheme is demonstrated using the logistic map as a case study.Comment: Modified version accepted for publication in Phys. Rev. E Rapid Communications. New figures adde

    Star formation in the merging Galaxy NGC3256

    Get PDF
    The central 5 kpc of the ultra-luminous merging galaxy NGC 3256 was mapped at J, H, K, L, and 10 micrometer, and a 2 micrometer spectra of the nuclear region was obtained. This data was used to identify and characterize the super starburst which has apparently been triggered and fuelled by the merger of two gas rich galaxies. It is also shown that the old stellar population has relaxed into a single spheroidal system, and that a supernova driven wind might eventually drive any remaining gas from the system to leave a relic which will be indistinguishable from an elliptical galaxy
    • …
    corecore