4,560 research outputs found

    The Effect of Water Use and Water Availability on Net Revenues and Optimal Cropping Patterns on the Texas High Plains

    Get PDF
    Agricultural production in the High Plains region of Texas is a part of the foundation of the region’s economy. Part of the reason for this is the availability of groundwater for irrigation. Currently, the region relies on the Ogallala Aquifer for irrigation water; however, the High Plains is also home to a second aquifer, the Dockum Aquifer, which could be a viable resource for agricultural use. While the Dockum could partially replace the Ogallala, but differences in depth and pumping cost mean that it is not a perfect subsitute. The purpose of this paper is to determine how the use of water resources and crop production in the area would change if a new water resource was introduced. For each of the forty-one counties in the study area, a representative farm was established that reflects the attributes of the county including land, hydrologic, and crop specific characteristics. To estimate the optimal use of groundwater in the region and identify how the inclusion of the Dockum Aquifer affects regional production and groundwater use, a non-linear programing model was created with the objective to maximize net revenues for each county. Using the model to establish a baseline in which only Ogallala water is used, the effect of the using the Dockum Aquifer was estimated by restricting the amount of water available in the Ogallala, while making the Dockum available for use.Agricultural and Food Policy, Crop Production/Industries, Resource /Energy Economics and Policy,

    An Energy-Efficient Reconfigurable DTLS Cryptographic Engine for End-to-End Security in IoT Applications

    Get PDF
    This paper presents a reconfigurable cryptographic engine that implements the DTLS protocol to enable end-to-end security for IoT. This implementation of the DTLS engine demonstrates 10x reduction in code size and 438x improvement in energy-efficiency over software. Our ECC primitive is 237x and 9x more energy-efficient compared to software and state-of-the-art hardware respectively. Pairing the DTLS engine with an on-chip RISC-V allows us to demonstrate applications beyond DTLS with up to 2 orders of magnitude energy savings.Comment: Published in 2018 IEEE International Solid-State Circuits Conference (ISSCC

    An Energy-Efficient Reconfigurable DTLS Cryptographic Engine for End-to-End Security in IoT Applications

    Full text link
    This paper presents a reconfigurable cryptographic engine that implements the DTLS protocol to enable end-to-end security for IoT. This implementation of the DTLS engine demonstrates 10x reduction in code size and 438x improvement in energy-efficiency over software. Our ECC primitive is 237x and 9x more energy-efficient compared to software and state-of-the-art hardware respectively. Pairing the DTLS engine with an on-chip RISC-V allows us to demonstrate applications beyond DTLS with up to 2 orders of magnitude energy savings.Comment: Published in 2018 IEEE International Solid-State Circuits Conference (ISSCC

    HD 4915: A Maunder Minimum Candidate

    Get PDF
    We study the magnetic activity cycle of HD 4915 using the \ion{Ca}{2} H \& K emission line strengths measured by Keck I/HIRES spectrograph. The star has been observed as a part of California Planet Search Program from 2006 to present. We note decreasing amplitude in the magnetic activity cycle, a pattern suggesting the star's entry into a Magnetic Grand Minimum (MGM) state, reminiscent of the Sun's Maunder and Dalton Minima. We recommend further monitoring of the star to confirm the grand minimum nature of the dynamo, which would provide insight into the state of the Sun's chromosphere and the global magnetic field during its grand minima. We also recommend continued observations of H \& K emission lines, and ground or space based photometric observations to estimate the sunspot coverage.Comment: To be submitted to AAS Journals; comments welcom

    Competitive swimmers modify racing start depth upon request

    Get PDF
    To expand upon recent findings showing that competitive swimmers complete significantly shallower racing starts in shallower pools, 12 more experienced and 13 less experienced swimmers were filmed underwater during completion of competitive starts. Two starts (1 routine and 1 “requested shallow”) were executed from a 0.76 m block height into water 3.66 m deep. Dependent measures were maximum head depth, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for both start type and swimmer experience. Starts executed by the more experienced swimmers were deeper and faster than those executed by the less experienced swimmers. When asked to dive shallowly, maximum head depth decreased (0.19 m) and head speed increased (0.33 ms-1) regardless of experience. The ability of all swimmers to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to an inherent inability to control the depth of the start

    Block height influences the head depth of competitive racing starts

    Get PDF
    The purpose of this study was to determine whether or not starting block height has an effect on the head depth and head speed of competitive racing starts. Eleven experienced, collegiate swimmers executed competitive racing starts from three different starting heights: 0.21 m (pool deck), 0.46 m (intermediate block), and 0.76 m (standard block). One-way repeated measures ANOVA indicated that starting height had a significant effect on the maximum depth of the center of the head, head speed at maximum head depth, and distance from starting wall at maximum head depth. Racing starts from the standard block and pool deck were significantly deeper, faster, and farther at maximum head depth than starts from the intermediate block. There were no differences between depth, speed, or distance between the standard block and pool deck. We conclude that there is not a positive linear relationship between starting depth and starting height, which means that starts do not necessarily get deeper as the starting height increases

    Water depth influences the head depth of competitive racing starts

    Get PDF
    Recent research suggests that swimmers perform deeper starts in deeper water (Blitvich, McElroy, Blanksby, Clothier, & Pearson, 2000; Cornett, White, Wright, Willmott, & Stager, 2011). To provide additional information relevant to the depth adjustments swimmers make as a function of water depth and the validity of values reported in prior literature, 11 collegiate swimmers were asked to execute racing starts in three water depths (1.53 m, 2.14 m, and 3.66 m). One-way repeated measures ANOVA revealed that the maximum depth of the center of the head was significantly deeper in 3.66 m as compared to the shallower water depths. No differences due to water depth were detected in head speed at maximum head depth or in the distance from the wall at which maximum head depth occurred. We concluded that swimmers can and do make head depth adjustments as a function of water depth. Earlier research performed in deep water may provide overestimates of maximum head depth following the execution of a racing start in water depth typical of competitive venues

    Start depth modification by adolescent competitive swimmers

    Get PDF
    To expand upon previous studies showing inexperienced high school swimmers can complete significantly shallower racing starts when asked to start “shallow,” 42 age group swimmers (6-14 years old) were filmed underwater during completion of competitive starts. Two starts (one normal and one “requested shallow”) were executed from a 0.76 m block into 1.83 m of water. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for start type and age. The oldest swimmers’ starts were deeper and faster than the youngest swimmers’ starts. When asked to start shallowly, maximum head depth decreased (0.10 m) and head speed increased (0.32 ms-1) regardless of age group. The ability of all age groups to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to age-related deficits in basic motor skills

    Racing start safety: head depth and head speed during competitive starts into a water depth of 1.22 m

    Get PDF
    From the perspective of swimmer safety, there have been no quantitative 3-dimensional studies of the underwater phase of racing starts during competition. To do so, 471 starts were filmed during a meet with a starting depth of 1.22 m and block height of 0.76 m. Starts were stratified according to age (8 & U, 9–10, 11–12, 13–14, and 15 & O) and stroke during the first lap (freestyle, breaststroke, and butterfly). Dependent measures were maximum head depth, head speed at maximum head depth, and distance from the wall at maximum head depth. For all three variables, there were significant main effects for age, F(4, 456) = 12.53, p < .001, F(4, 456) = 27.46, p < .001, and F(4, 456) = 54.71, p < .001, respectively, and stroke, F(2, 456) = 16.91, p < .001, F(2, 456) = 8.45, p < .001, and F(2, 456) = 18.15, p < .001, respectively. The older swimmers performed starts that were deeper and faster than the younger swimmers and as a result, the older swimmers may be at a greater risk for injury when performing starts in this pool depth
    corecore