3 research outputs found

    Thermocapillary Fingering in Surfactant-Laden Water Droplets

    No full text
    The drying of sessile droplets represents an intriguing problem, being a simple experiment to perform but displaying complexities that are archetypical for many free surface and coating flows. Drying can leave behind distinct deposits of initially well dispersed colloidal matter. For example, in the case of the coffee ring effect, particles are left in a well-defined macroscopic pattern with particles accumulating at the edge, controlled by the internal flow in the droplet. Recent studies indicate that the addition of surfactants strongly influences this internal flow field, even reversing it and suppressing the coffee ring effect. In this work, we explore the behavior of droplets at high surfactant loadings and observe unexpected outward fingering instabilities. The experiments start out with droplets with a pinned contact line, and fast confocal microscopy is used to quantify a radially outward surfactant-driven Marangoni flow, in line with earlier observations. However, the Marangoni flows are observed to become unstable, and local vortex cells are now observed in a direction along the contact line. The occurrence of these vortices cannot be explained on the basis of the effects of surfactants alone. Thermal imaging shows that thermocapillary effects are superimposed on the surfactant-driven flows. These local vortex cells acts as little pumps and push the fluid outward in a fingering instability, rather than an expected inward retraction of the drying droplet. This leads to a deposition of colloids in a macroscopical flower-shaped pattern. A scaling analysis is used to rationalize the observed wavelengths and velocities, and practical implications are briefly discussed

    Combing of Genomic DNA from Droplets Containing Picograms of Material

    Get PDF
    Deposition of linear DNA molecules is a critical step in many single-molecule genomic approaches including DNA mapping, fiber-FISH, and several emerging sequencing technologies. In the ideal situation, the DNA that is deposited for these experiments is absolutely linear and uniformly stretched, thereby enabling accurate distance measurements. However, this is rarely the case, and furthermore, current approaches for the capture and linearization of DNA on a surface tend to require complex surface preparation and large amounts of starting material to achieve genomic-scale mapping. This makes them technically demanding and prevents their application in emerging fields of genomics, such as single-cell based analyses. Here we describe a simple and extremely efficient approach to the deposition and linearization of genomic DNA molecules. We employ droplets containing as little as tens of picograms of material and simply drag them, using a pipet tip, over a polymer-coated coverslip. In this report we highlight one particular polymer, Zeonex, which is remarkably efficient at capturing DNA. We characterize the method of DNA capture on the Zeonex surface and find that the use of droplets greatly facilitates the efficient deposition of DNA. This is the result of a circulating flow in the droplet that maintains a high DNA concentration at the interface of the surface/solution. Overall, our approach provides an accessible route to the study of genomic structural variation from samples containing no more than a handful of cells

    Photophysical Investigation of Cyano-Substituted Terrylenediimide Derivatives

    No full text
    Two new terrylenediimide (TDI) chromophores with cyano substituents in the bay and core area (BCN-TDI and OCN-TDI, respectively) have been characterized by a wide range of techniques, and their applicability for stimulated emission depletion (STED) microscopy has been tested. By cyano substitution an increase of the fluorescence quantum yield and a decrease of the nonradiative rate constant is achieved and attributed to a reduced charge-transfer character of the excited state due to a lower electron density of the TDI core. For BCN-TDI, the substitution in the bay area induces a strong torsional twist in the molecule which, similar to phenoxy bay-perylenediimide (PDI), has a strong effect on the fluorescence lifetime but appears to prevent the aggregation that is observed for OCN-TDI. The single-molecule photobleaching stability of BCN- and OCN-TDI is lower than that of a reference TDI without cyano substitution (C7-TDI), although less so for OCN-TDI. The photophysical properties of the excited singlet state are only slightly influenced by the cyano groups. The observed intense stimulated emission, the pump–dump–probe experiments, and STED single-molecule imaging indicate that STED experiments with the cyano-substituted TDIs are possible. However, because of aggregation and more efficient photobleaching, the performance of BCN- and OCN-TDI is worse than that of the reference compound without cyano groups (C7-TDI). Bay-substituted TDIs are less suitable for STED microscopy
    corecore