12 research outputs found

    Trait-Environment Relationships and Tiered Forward Model Selection in Linear Mixed Models

    No full text
    To understand patterns of variation in species biomass in terms of species traits and environmental variables a one-to-one approach might not be sufficient, and a multitrait multienvironment approach will be necessary. A multitrait multienvironment approach is proposed, based on a mixed model for species biomass. In the model, environmental variables are species-dependent random terms, whereas traits are fixed terms, and trait-environment relationships are fixed interaction terms. In this approach, identifying the important trait-environment relationship becomes a model selection problem. Because of the mix of fixed and random terms, we propose a novel tiered forward selection approach for this. In the first tier, the random factors are selected; in the second, the fixed effects; in the final tier, nonsignificant terms are removed using a modified Akaike information criterion. We complement this tiered selection with an alternative selection method, namely, type II maximum likelihood. A mesocosm experiment on early community assembly in wetlands with three two-level environmental factors is analyzed by the new approach. The results are compared with the fourth corner problem and the linear trait-environment method. Traits related to germination and seedling establishment are selected as being most important in the community assembly in these wetland mesocosms

    Waterlogging and canopy interact to control species recruitment in floodplains

    No full text
    P>1. The extent to which seedling recruitment contributes to local functional diversity depends on the environmental filters operating in a plant community. Classical community assembly models assume that habitat constraints and competition act like hierarchical filters with habitat filtering as the dominant one. Alternative models assume a synergic interaction since responses to environmental stress and competition may impose physiological trade-offs in plants. 2. River floodplains are an ideal system to test the relationship between habitat and competition filtering in community (re)assembly, as flooding causes changes in both habitat stress (waterlogging, resulting in anoxia and toxicity) and competition (dieback of vegetation) on one hand and acts as an effective seed dispersal vector on the other hand. 3. We conducted a mesocosm experiment on early community assembly from a pool of 34 floodplain species covering a wetness gradient. Seed mixtures were sown in a full factorial design with water level, canopy and mowing as controlling factors. We measured the biomass of all species after one growing season and determined germination and seedling growth traits, both outside (response to waterlogging/no waterlogging) and in a growth-chamber (response to light/darkness). 4. Species recruitment was analysed in relation to the controlling factors and measured functional traits using co-inertia analysis. Furthermore we analysed the effects of the controlling factors on several aspects of functional diversity. 5. There was no establishment in grass sward, unless mowing was applied. Species-rich communities only developed when germination and early establishment phases occurred on waterlogged bare soil. High water level did not suppress establishment but reduced the total biomass and lowered inter-specific competition. The effect of mowing on species richness depended upon the interplay between waterlogging and canopy. 6. Establishment success under canopy required seedling strategies to tolerate shade. The elimination of typical wetland specialists from oxic mesocosms was clearly an effect of their poorer and/or slower germination and lower competitive abilities in comparison to non-wetland plants, leading to their disappearance in this low-stress environment. 7. Our results indicate that single stress factors can enhance species richness and functional diversity through limiting competition but a synergic interaction of different stresses can lead to reduced richness

    Silicon-vegetation interaction in multiple ecosystems : a review

    No full text
    Abstract: Question How does the interaction between silicon (Si) and vegetation affect local and global ecological processes, higher levels of ecological organization, and terrestrial- and watershed-scale Si fluxes? Location We selected several ecosystems throughout the world, from river headwaters to estuaries, being examples of (i) terrestrial vegetation, (ii) aquatic and floodplain vegetation, and (iii) tidal wetland vegetation. Methods We provide examples of the importance of linking Si use by terrestrial and aquatic vegetation, to larger-scale Si flux consequences towards and through rivers. Cross-disciplinary studies achieve the best understanding of vegetation effects on the global Si cycle, and the role of Si as a plant functional trait. Conclusion Si use by plants has not always received the research attention of other elements. Yet, today the importance of Si for plant functioning is slowly becoming better understood. Silicon is a crucial element for many plant species, being important for decomposition processes, plant competitiveness and stress tolerance. The inclusion by vegetation scientists of Si uptake as a plant functional trait is important to assess links between plant physiology, plant distribution and plant tolerance to environmental changes, but also to understand the role of vegetation on Si fluxes through the watershed. However, lack of knowledge regarding the biological control of the Si cycle hinders accurate quantification. Only a concerted effort bringing scientists together from a broad array of disciplines will provide this new direction for research on vegetationSi cycling
    corecore