10 research outputs found

    Prediction of thioguanine-induced cytotoxicity by dual-parameter flow cytometric analysis

    Full text link
    A method is presented for the quantitative analysis of delayed cytokinetic effects resulting from the treatment of L1210 cells with 6-thioguanine (TG). By using dual-parameter (DNA/protein) flow cytometry, we could observe the accumulation of late S/G2/M cells with abnormally high green fluorescence (i.e., protein content), indicative of unbalanced growth. The use of mitotic cells from a pseudotetraploid line (HT29) as external markers for both red and green fluorescence facilitated highly reproducible measurement of the mean green fluorescence (GFL mean ) of the arrested late S/G2/M population. We found that the dose dependence of the observed GFL mean values followed the same unusual biphasic pattern as did cytotoxicity in this cell line, indicating that this parameter might be a suitable means of predicting TG-induced toxicity in vivo. We propose that the low background expected for this kind of measurement would make it particularly appropriate for the analysis of clinical specimens (e.g., mononuclear bone marrow cells) from leukemic patients receiving thiopurines, to monitor (and, hopefully, predict) their response to treatment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46920/1/280_2004_Article_BF00304760.pd

    Epigenetic Enhancement of the Post-replicative DNA Mismatch Repair of Mammalian Genomes by a Hemi-mCpG-Np95-Dnmt1 Axis

    No full text
    DNA methylation at C of CpG dyads ((m)CpG) in vertebrate genomes is essential for gene regulation, genome stability and development. We show in this study that proper functioning of post-replicative DNA mismatch repair (MMR) in mammalian cells relies on the presence of genomic (m)CpG, as well as on the maintenance DNA methyltransferase Dnmt1 independently of its catalytic activity. More importantly, high efficiency of mammalian MMR surveillance is achieved through a hemi-(m)CpG-Np95(Uhrf1)-Dnmt1 axis, in which the MMR surveillance complex(es) is recruited to post-replicative DNA by Dnmt1, requiring its interactions with MutSα, as well as with Np95 bound at the hemi-methylated CpG sites. Thus, efficiency of MMR surveillance over the mammalian genome in vivo is enhanced at the epigenetic level. This synergy endows vertebrate CpG methylation with a new biological significance and, consequently, an additional mechanism for the maintenance of vertebrate genome stability

    Antipurines

    No full text
    corecore